首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to DNA damage, E2F-1 is induced and phosphorylated. Phosphorylated E2F-1 can reside in discrete nuclear structures and induce apoptosis, suggesting a unique role for E2F-1 in DNA repair and checkpoint functions.  相似文献   

2.
The cyclin-dependent kinase inhibitor p21 is required for a sustained G(2) arrest after activation of the DNA damage checkpoint. Here we have addressed the mechanism by which p21 can contribute to this arrest in G(2). We show that p21 blocks the activating phosphorylation of Cdc2 on Thr(161). p21 does not interfere with the dephosphorylation of two inhibitory phosphorylation sites on Cdc2, Thr(14) and Tyr(15), indicating that p21 targets a different event in Cdc2 activation as the well described DNA damage checkpoint pathway involving Chk1 and Cdc25C. Taken together our data show that a cell is equipped with at least two independent pathways to ensure efficient inhibition of Cdc2 activity in response to DNA damage, influencing both positive and negative regulatory phosphorylation events on Cdc2.  相似文献   

3.
Cell cycle progression is prevented by signal transduction pathways known as checkpoints which are activated in response to replication interference and DNA damage. We cloned a G2/M cell cycle phase-related checkpoint gene from a neonatal mouse testis cDNA library which was identified as mouse claspin, a proposed adaptor protein for Chk1. As part of a study on germ cell differentiation we examined the expression of the checkpoint gene, Chk1, and claspin at 12.5 and 14.5 days post coitum (dpc) and in the post-natal phase. Chk1 mRNA expression increased from 12.5 to 14.5 dpc in female gonads and was strong in males at both time points. Claspin however, was not detected until 14.5 dpc. This suggests there may be some dissociation of claspin expression from Chk1 in fetal germ cell development. Chk1 and claspin expression was also studied in testis over the first 3 days following birth, when apoptosis regulates germ stem cell number. We modulated checkpoint-related gene expression in testis using the anti-metabolite, 5-fluorouracil, resulting in increased apoptosis and upregulation of Chk1 (P<0.0001) and Cdc2 (P<0.02) mRNA. Although we do not fully understand the role checkpoint gene expression has during mammalian germ cell development this report is the first to show the expression of checkpoint-related genes in early mammalian germ cells.  相似文献   

4.
5.
6.
A class of helix-loop-helix (HLH) proteins, including E2A (E12 and E47), E2-2, and HEB, that bind in vitro to DNA sequences present in the immunoglobulin (Ig) enhancers has recently been identified. E12, E47, E2-2, and HEB are each present in B cells. The presence of many different HLH proteins raises the question of which of the HLH proteins actually binds the Ig enhancer elements in B cells. Using monoclonal antibodies specific for both E2A and E2-2, we show that both E2-2 and E2A polypeptides are present in B-cell-specific Ig enhancer-binding complexes. E2-box-binding complexes in pre-B cells contain both E2-2 and E2A HLH subunits, whereas in mature B cells only E2A gene products are present. We show that the difference in E2-box-binding complexes in pre-B and mature B cells may be caused by differential expression of E2A and E2-2.  相似文献   

7.
8.
9.
This is an addendum to our recent paper published in The Plant Journal (52:352–61). The major findings were: (1) trichomes on the leaves of gl3-sst sim double mutants developed as large multi-cellular clusters whereas wild type trichomes are composed of single cells; (2) ectopic CYCD3;1 expression in gl3-sst trichomes also resulted in trichome cluster formation; and (3) that GL1 expression is prolonged in the gl3-sst sim trichome clusters. This addendum shows that ectopic CYCD3;1 expression in gl3-sst also enhanced GL1 expression. An analysis of the GL1 promoter found two overlapping potential E2F binding sites in a region of the promoter known to be essential for GL1 function. This finding indicates that GL1 may be directly regulated by the activity of a CYCD3/CDKA complex that phosphorylates E2F-RB bound to the GL1 promoter.Key words: plant cell cycle, endoreduplication, glabra1, plant development  相似文献   

10.
The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in ATRIP orthologs was identified by biochemical mapping of the RPA binding site in combination with nuclear magnetic resonance, mutagenesis, and computational modeling. Mutations in the CRD of the Saccharomyces cerevisiae ATRIP ortholog Ddc2 disrupt the Ddc2-RPA interaction, prevent proper localization of Ddc2 to DNA breaks, sensitize yeast to DNA-damaging agents, and partially compromise checkpoint signaling. These data demonstrate that the CRD is critical for localization and optimal DNA damage responses. However, the stimulation of ATR kinase activity by binding of topoisomerase binding protein 1 (TopBP1) to ATRIP-ATR can occur independently of the interaction of ATRIP with RPA. Our results support the idea of a multistep model for ATR activation that requires separable localization and activation functions of ATRIP.  相似文献   

11.
12.
Levuglandin E2 crosslinks proteins   总被引:3,自引:0,他引:3  
Levuglandin E2 (LGE2), a gamma-ketoaldehyde produced by rearrangement of the prostaglandin endoperoxide PGH2 under the aqueous conditions of its biosynthesis, causes extensive intermolecular crosslinking of ovalbumin at pH 6 or pH 7 and 37 degrees C. The time dependence of protein oligomerization is monitored by SDS-PAGE. Effects of pH and concentration on the extent of LGE2-induced crosslinking are examined. The efficacy of LGE2 for inducing crosslinking is compared with other oxidative metabolites of arachidonic acid (AA), including the prostaglandins PGE2, PGD2, PGA2, PGB2, and PGF2 alpha, as well as malondialdehyde and E-4-hydroxy-non-2-enal. LGE2 is orders of magnitude more effective in crosslinking protein than any other cyclooxygenase or lipoxygenase metabolite of AA tested.  相似文献   

13.
The inhibitors of apoptosis proteins (IAPs) constitute a family of endogenous inhibitors that control apoptosis in the cell by inhibiting caspase processing and activity. IAPs are also implicated in cell division, cell cycle regulation, and cancer. To address the role of IAPs in thymus development and homeostasis, we generated transgenic mice expressing IAP generated from the baculovirus Orgyia pseudotsugata nuclear polyhedrosis virus (OpIAP). Developing thymocytes expressing OpIAP show increased nuclear levels of NF-kappaB and reduced cytoplasmic levels of its inhibitor, IkappaBalpha. In mature thymocytes, OpIAP induces optimal activation and proliferation after TCR triggering in the absence of a costimulatory signal. OpIAP expression in immature thymocytes blocks TCR-induced apoptosis. Taken together, our data illustrate the pleiotropism of OpIAP in vivo.  相似文献   

14.
Both Ikaros and Notch are essential for normal T cell development. Collaborative mutations causing a reduction in Ikaros activity and an increase in Notch activation promote T cell leukemogenesis. Although the molecular mechanisms of this cooperation have been studied, its consequences in thymocyte development remain unexplored. In this study, we show that Ikaros regulates expression of a subset of Notch target genes, including Hes1, Deltex1, pTa, Gata3, and Runx1, in both Ikaros null T cell leukemia lines and Ikaros null primary thymocytes. In Ikaros null leukemia cells, Notch deregulation occurs at both the level of Notch receptor cleavage and expression of Notch target genes, because re-expression of Ikaros in these cells down-regulates Notch target gene expression without affecting levels of intracellular cleaved Notch. In addition, abnormal expression of Notch target genes is observed in Ikaros null double-positive thymocytes, in the absence of detectable intracellular cleaved Notch. Finally, we show that this role of Ikaros is specific to double-positive and single-positive thymocytes because derepression of Notch target gene expression is not observed in Ikaros null double-negative thymocytes or lineage-depleted bone marrow. Thus, in this study, we provide evidence that Ikaros and Notch play opposing roles in regulation of a subset of Notch target genes and that this role is restricted to developing thymocytes where Ikaros is required to appropriately regulate the Notch program as they progress through T cell development.  相似文献   

15.
The identification of factors that regulate the proliferation and differentiation of double-positive (DP) into CD4(+) and CD8(+) single-positive (SP) thymocytes has proven difficult due to the inability of DP thymocytes to proliferate, expand, and differentiate into SP thymocytes in available cell culture media. Here we report on the ability of DP thymocytes to differentiate in a novel conditioned medium, termed XLCM, derived from the supernatant of mitogen activated human cord blood mononuclear cells. During a 5-day culture in XLCM in the absence of thymic stromal cells, DP thymocytes from normal mice and MHC double knockout mice (lack SP thymocytes) proliferate, expand, and differentiate into several (alphabetaTCR(+), NK1.1(+)alphabetaTCR(+), and gammadeltaTCR(+)) subsets of CD4(+) and predominantly CD8(+) SP thymocytes. These studies suggest that the use of XLCM may aid in the characterization of factors that regulate the differentiation of DP thymocytes into CD8(+) SP thymocytes.  相似文献   

16.
The DNA and the spindle assembly checkpoints play key roles in maintaining genomic integrity by coordinating cell responses to DNA lesions and spindle dysfunctions, respectively. These two surveillance pathways seem to operate mostly independently of one another, and little is known about their potential physiological connections. Here, we show that in Saccharomyces cerevisiae, the activation of the spindle assembly checkpoint triggers phosphorylation changes in two components of the DNA checkpoint, Rad53 and Rad9. These modifications are independent of the other DNA checkpoint proteins and are abolished in spindle checkpoint-defective mutants, hinting at specific functions for Rad53 and Rad9 in the spindle damage response. Moreover, we found that after UV irradiation, Rad9 phosphorylation is altered and Rad53 inactivation is accelerated when the spindle checkpoint is activated, which suggests the implication of the spindle checkpoint in the regulation of the DNA damage response.  相似文献   

17.
The E2 ubiquitin-conjugating enzyme UBC13 plays pivotal roles in diverse biological processes. Recent studies have elucidated that UBC13, in concert with the E3 ubiquitin ligase RNF8, propagates the DNA damage signal via a ubiquitylation-dependent signaling pathway. However, mechanistically how UBC13 mediates its role in promoting checkpoint protein assembly and its genetic requirement for E2 variants remain elusive. Here we provide evidence to support the idea that the E3 ubiquitin ligase complex RNF8-UBC13 functions independently of E2 variants and is sufficient in facilitating ubiquitin conjugations and accumulation of DNA damage mediator 53BP1 at DNA breaks. The RNF8 RING domain serves as the molecular platform to anchor UBC13 at the damaged chromatin, where localized ubiquitylation events allow sustained accumulation of checkpoint proteins. Intriguingly, we found that only a group of RING domains derived from E3 ubiquitin ligases, which have been shown to interact with UBC13, enabled UBC13-mediated FK2 and 53BP1 focus formation at DNA breaks. We propose that the RNF8 RING domain selects and loads a subset of UBC13 molecules, distinct from those that exist as heterodimers, onto sites of double-strand breaks, which facilitates the amplification of DNA damage signals.  相似文献   

18.
19.
Lisby M  Rothstein R 《Biochimie》2005,87(7):579-589
In eukaryotes, the cellular response to DNA damage depends on the type of DNA structure being recognized by the checkpoint and repair machinery. DNA ends and single-stranded DNA are hallmarks of double-strand breaks and replication stress. These two structures are recognized by distinct sets of proteins, which are reorganized into a focal assembly at the lesion. Moreover, the composition of these foci is coordinated with cell cycle progression, reflecting the favoring of end-joining in the G1 phase and homologous recombination in S and G2. The assembly of proteins at sites of DNA damage is largely controlled by a network of protein-protein interactions, with the Mre11 complex initiating assembly at DNA ends and replication protein A directing recruitment to single-stranded DNA. This review summarizes current knowledge on the cellular organization of DSB repair and checkpoint proteins focusing on budding yeast and mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号