首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
《The Journal of cell biology》1989,109(6):2693-2702
A membrane-associated galactosyltransferase has been purified to homogeneity from the fission yeast, Schizosaccharomyces pombe. The enzyme has a molecular weight of 61,000 and is capable of transfering galactose from UDP-galactose (UDP-Gal) to a variety of mannose-based acceptors to form an alpha-1,2 galactosyl mannoside linkage. Immunofluorescence localization of the protein is consistent with the presence of the enzyme in the Golgi apparatus of S. pombe. This, together with the presence of terminal, alpha-linked galactose on the N- linked oligosaccharides of S. pombe secretory proteins, suggests that the galactosyltransferase is an enzyme involved in the processing of glycoproteins transported through the Golgi apparatus in fission yeast.  相似文献   

7.
The Schizosaccharomyces pombe ORF, SPAC29B12.10c, a predicted member of the oligopeptide transporter (OPT) family, was identified as a gene encoding the S. pombe glutathione transporter ( Pgt1 ) by a genetic strategy that exploited the requirement of the cys1a Δ strain of S. pombe (which is defective in cysteine biosynthesis) for either cysteine or glutathione, for growth. Disruption of the ORF in the cys1a Δ strain led to an inability to grow on glutathione as a source of cysteine. Cloning and subsequent biochemical characterization of the ORF revealed that a high-affinity transporter for glutathione ( K m=63 μM) that was found to be localized to the plasma membrane. The transporter was specific for glutathione, as significant inhibition in glutathione uptake could be observed only by either reduced or oxidized glutathione, or glutathione conjugates, but not by dipeptides or tripeptides. Furthermore, although glu–cys–gly, an analogue of glutathione (γ-glu–cys–gly), could be utilized as a sulphur source, the growth was not Pgt1 dependent. This further underlined the specificity of this transporter for glutathione. The strong repression of pgt1+ expression by cysteine suggested a role in scavenging glutathione from the extracellular environment for the maintenance of sulphur homeostasis in this yeast.  相似文献   

8.
9.
10.
We have isolated mutants in the fission yeast Schizosaccharomyces pombe that are defective in protein glycosylation. A collection of osmotically sensitive mutants was prepared and screened for glycosylation defects using lectin staining as an assay. Mutants singly defective in four glycoprotein synthesis genes (gps1-4) were isolated, all of which bind less galactose-specific lectin. Acid phosphatase and other glycoproteins from the gps mutants have increased electrophoretic mobility, suggesting that these mutants make glycans of reduced size. N-linked glycan analysis revealed that terminal oligosaccharide modification is defective in the gps1 and gps2 mutants. Both mutants synthesize the Man9GlcNAc2 core glycan but have reduced amounts of larger structures. Modified core glycans from gps1 cells have normal amounts of galactose (Gal) residues, but reduced amounts of Man, consistent with a defect in a Golgi mannosyltransferase in this mutant. In contrast, N-linked oligosaccharides from gps2 mutants have much less Gal than wild type, because of reduced levels of the Gal donor, UDP-Gal. This reduction is caused by decreased activity of UDP-glucose 4-epimerase, which synthesizes UDP-Gal. Neither the gps1 or gps2 mutations are lethal, although the cells grow at reduced rates. These findings suggest that S. pombe cells can survive with incompletely glycosylated cell wall glycoproteins. In particular, these results suggest that Gal, which comprises approximately 30% by weight of cell wall glycoprotein glycans, is not crucial for cell growth or survival.  相似文献   

11.
Proper ras1 function is required for normal sexual function in the yeast Schizosaccharomyces pombe. We have found a gene in S. pombe, sar1, that encodes a product capable of regulating ras1 function. sar1 is a member of an expanding family of RAS GTPase-activating proteins (GAPs) that includes mammalian GAP, the yeast Saccharomyces cerevisiae IRA proteins, and the product of the human neurofibromatosis locus, NF1 sar1, like these other proteins, can complement the loss of IRA function in S. cerevisiae. Computer analysis shows that the highest degree of sequence conservation is restricted to a very small number of diagnostic residues represented by the motif Phe-Leu-Arg-X-X-X-Pro-Ala-X-X-X-Pro. We find no evidence that sar1 is required for the effector function of ras1.  相似文献   

12.
13.
14.
15.
Five cyclin-like genes, cig1, cig2/cyc17, mcs2, puc1 and cdc13, have been discovered in S. pombe to date. It is not yet clear what their functions are or even whether they are all involved with control of the cell cycle. Conflicting data for cig1 and cig2/cyc17 have obscured analysis of their function and cig1 remains largely uncharacterized, although clues to the role of cig2/cyc17 have emerged. There is genetic data available for the more distant cyclin homologue mcs2, which has an essential although as yet unspecified role. Puc1 may be involved in regulation of exit from the cell cycle. The first cyclin to be discovered, and the best understood, is cdc13 which with cdc2 promotes mitosis. Studies of the roles of cdc2 and cdc13 in the overall ordering of the cell cycle suggest that cdc13 and probably other cyclins are key regulators, maintaining the order of S phase and mitosis during the cell cycle.  相似文献   

16.
We have isolated the abc1 gene from the fission yeast Schizosaccharomyces pombe. Sequence analysis suggests that the Abc1 protein is a member of the ABC superfamily of transporters and is composed of two structurally homologous halves, each consisting of a hydrophobic region of six transmembrane domains and a hydrophilic region containing one ATP-binding site. The abc1 gene appears to be expressed under all growth conditions but gene disruption experiments indicate that it is not essential for growth. The sequence of the abc1 gene has been deposited in the EMBL data library under the Accession Number Y09354.  相似文献   

17.
18.
19.
Summary The POL1 gene of the fission yeast, Schizosaccharomyces pombe, was isolated using a POL1 gene probe from the budding yeast Saccharomyces cerevisiae, cloned and sequenced. This gene is unique and located on chromosome II. It includes a single 91 by intron and is transcribed into a mRNA of about 4500 nucleotides. The predicted protein coded for by the S. pombe POL1 gene is 1405 amino acid long and its calculated molecular weight is about 160000 daltons. This peptide contains seven amino acid blocks conserved among several DNA polymerases from different organisms and shares overall 37% and 34% identity with DNA polymerases alpha from S. cerevisiae and human cells, respectively. These results indicate that this gene codes for the S. pombe catalytic subunit of DNA polymerase alpha. The comparisons with human DNA polymerase alpha and with the budding yeast DNA polymerases alpha, delta and epsilon reveal conserved blocks of amino acids which are structurally and/or functionally specific only for eukaryotic alpha-type DNA polymerases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号