首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinal pigment epithelium (RPE) cells play important roles in the visual system that supports neurosensory retina homeostasis. Connexin (Cx) 43-mediated gap-junctional intercellular communication (GJIC) participates in the regulation of retinal organogenesis, but much of the function of Cx43 on the differentiation of RPE cells is unclear. Here, we report the involvement of Cx43 in RPE differentiation. Knockdown of Cx43 in RPE cells dramatically inhibited the differentiation, whereas Cx43-overexpression successfully induced RPE cell differentiation under de-differentiation conditions. From the experiments using GJIC inhibitors and C-terminus-truncated mutant of Cx43, it was clearly demonstrated that the regulation of RPE cell differentiation by Cx43 did not result from Cx43-mediated GJIC. The RPE cell differentiation induced by Cx43-overexpression was abolished by a cAMP antagonist. In contrast, the treatment with forskolin and phosphodiesterase inhibitor rolipram induced RPE cell differentiation under de-differentiation conditions. These findings indicate that Cx43 contributes to RPE differentiation via cAMP signaling.  相似文献   

2.
Gap junctions are considered to play a crucial role in differentiation of epithelial cells and to be associated with tight junction proteins. In this study, to investigate the role of gap junctions in regulation of the barrier function and fence function on the tight junctions, we introduced the Cx26 gene into human airway epithelial cell line Clau-3 and used a disruption model of tight junctions employing the Na(+)/K(+)-ATPase inhibitor ouabain. In parental Calu-3 cells, gap junction proteins Cx32 and Cx43, but not Cx26, and tight junction proteins occludin, JAM-1, ZO-1, claudin-1, -2, -3, -4, -5, -6, -7, -8, -9, and -14 were detected by RT-PCR. The barrier function and fence function of tight junctions were well maintained, whereas the GJIC was low level. Treatment with ouabain caused disruption of the barrier function and fence function of tight junctions together with down-regulation of occludin, JAM-1, claudin-2, and -4 and up-regulation of ZO-1 and claudin-14. In Cx26 transfectants, Cx26 protein was detected by Western blotting and immunocytochemistry, and many gap junction plaques were observed with well-developed tight junction strands. Expression of claudin-14 was significantly increased in Cx26 transfectants compared to parental cells, and in some cells, Cx26 was co-localized with claudin-14. Interestingly, transfection with Cx26 prevented disruption of both functions of tight junctions by treatment with ouabain without changes in the tight junction proteins. Pretreatment with the GJIC blockers 18beta-glycyrrhetinic acid and oleamide did not affect the changes induced by Cx26 transfection. These results suggest that Cx26 expression, but not the mediated intercellular communication, may regulate tight junction barrier and fence functions in human airway epithelial cell line Calu-3.  相似文献   

3.
The development and function of the mammary gland require precise control of gap junctional intercellular communication (GJIC). Here, we review the expression and function of gap junction proteins, connexins, in the normal mouse and human mammary gland. We then discuss the possible tumor-suppressive role of Cx26 and Cx43 in primary breast tumors and through the various stages of breast cancer metastasis and consider whether connexins or GJIC may actually promote tumorigenesis at some stages. Finally, we present in vitro data on the impact of connexin expression on breast cancer cell metastasis to the bone. We observed that Cx43 expression inhibited the invasive and migratory potentials of MDA-MB-231 breast cancer cells in a bone microenvironment, provided by the MC3T3-E1 mouse osteoblastic cell line. Expression of either Cx26 or Cx43 had no effect on MDA-MB-231 growth and adhesion under the influence of osteoblasts and did not result in regulation of osteogenic gene expression in these breast cancer cells. Furthermore, connexin-expressing MDA-MB-231 cells did not have an effect on the growth or differentiation of MC3T3-E1 cells. In summary, we conclude that connexin expression and GJIC are integral to the development and differentiation of the mammary gland. In breast cancer, connexins generally act as tumor suppressors in the primary tumor; however, in advanced breast tumors, connexins appear to act as both context-dependent tumor suppressors and facilitators of disease progression.  相似文献   

4.
Epithelial-to-mesenchymal transition (EMT) is the process in which epithelial cells lose cell polarity and cell adhesion with surrounding cells to obtain migratory and invasive abilities. On the other hand, the expression of connexin is decreased or lacked in the many types of tumor cells. This study examined the effect of gap junctional intercellular communication (GJIC) on EMT induced by the transforming growth factor-β1 (TGF-β1). To investigate the effect of GJIC on EMT in U2OS cells, smooth muscle 22-α (sm22α) promoter-driven luciferase reporter gene was introduced into Cx43-expressing cells (U2OS-Luc Cx43) and into the control parental cell line (U2OS-Luc). TGF-β1 induced the expression of EMT markers and the sm22α promoter activity of U2OS-Luc cells. Sm22α promoter activity of U2OS cells was neither dependent on the expression of Cx43 nor on the establishment of GJIC among U2OS cells. Furthermore, we found that the homocellular communication among tumor cells did not affected the tumor cell growth and migration. However, we revealed that tumor cell density was an important factor for tumor cells to acquire metastatic phenotype. Interestingly, the co-culture of U2OS cells with osteoblasts revealed that sm22α promoter activity was inhibited only by the GJIC established between these two cell types. These results suggest that normal osteoblast cells negatively regulate the EMT of tumor cells, at least in part. Thus, Cx43-mediated GJIC may have anti-metastatic activity in tumor cells. Our findings provide a new insight into the role of GJIC in cancer progression and metastasis and identify potential therapeutic targets for the treatment of cancer.  相似文献   

5.
Chronic inhalation of quartz particles has been implicated in lung diseases including silicosis and cancer. The aim of this study was to investigate whether quartz particles affect gap junctional intercellular communication (GJIC) in rat lung epithelial cells (RLE-6TN). Here, we demonstrate that exposure of RLE-6TN cells to subtoxic doses of DQ12 standard quartz resulted in an up to 55% reduction of GJIC, as determined in a dye transfer assay. We show that connexin-43 (Cx43) is the major connexin responsible for intercellular communication in these lung epithelial cells and that exposure to quartz particles induces a significant internalization of Cx43. Downregulation of GJIC was attenuated by N-acetyl cysteine, suggesting the involvement of reactive oxygen species and/or cellular thiol homeostasis in the regulation of GJIC. Furthermore, an inhibitor of activation of extracellular signal-regulated kinases prevented the loss of GJIC in cells exposed to DQ12 quartz, although no direct phosphorylation of Cx43 upon exposure to DQ12 was detected.  相似文献   

6.
Kurohane K  Namba Y  Oku N 《Life sciences》2000,68(3):273-281
Administration of large amounts of synthetic peptides based on the Arg-Gly-Asp (RGD) sequence has been shown to suppress tumor metastasis. To overcome the rapid degradation of peptides in the circulation, an RGD mimetic, L-arginyl-6-aminohexanoic acid (NOK), was synthesized and conjugated with phosphatidylethanolamine (PE) (NOK-PE) for liposomalization. Cell adhesion assays revealed that B16BL6 murine melanoma cells adhered to immobilized NOK-PE. This adhesion was inhibited by addition of either soluble RGDS or NOK at similar concentration in a dose-dependent manner. Administration of NOK-PE liposomes (equivalent to ca. 500 microg RGD peptides) via the tail vein completely inhibited lung colonization of B 16BL6 cells. The same dose of soluble NOK was not effective in inhibition of the tumor metastasis. In addition, injection of NOK-PE liposomes via the tail vein inhibited spontaneous lung metastasis of B16BL6 cells from the primary tumor site in the hind footpad. These results suggest that NOK, a structural mimetic of RGD, is capable of suppressing metastasis by blockade of the binding of the integrins present on tumor cells to the RGD-containing extracellular matrix.  相似文献   

7.
There are accumulating evidences suggesting that connexin (Cx), a gap junction channel-forming protein, acts as a growth suppressor in various cancer cells, and this effect is attributed to the gap junction-mediated intercellular communication (GJIC). In order to characterize the relationship between the growth-arresting activity of Cx26 and its cytoplasmic localizations after expression, we linked a nuclear export signal (NES) sequence to Cx26 cDNA before transfecting into a rat breast cancer cell line. A confocal fluorescent microscopic observation revealed that the insertion of NES minimized the nuclear expression of Cx26, and increased its cytoplasmic expression, including plasma membrane junctions. Total cell counting and BrdUrd-labeling experiments showed that the growth of the breast cancer cells was inhibited by 74% upon transfection of Cx26-NES, whereas only 9% inhibition was observed with only Cx26 cDNA.  相似文献   

8.
CadherinsaremembranousCa2+dependent,homophilic,adhesionmoleculesthatareassumedtoplayessentialrolesincellrecognition,cellsorting,embryonicmorphogenesisandsignaltransduction[1,2].ThesetransmembranemoleculesformaplaquethroughitscytoplasmicdomainatCtailwiththe…  相似文献   

9.
A considerable amount of evidence has established that gap junctional intercellular communication (GJIC) suppresses tumor development by halting the stage of tumor promotion. Consistently, GJIC is downregulated in tumors. The downregulation of GJIC is caused by not only the reduced expression level of connexin proteins but also their aberrant cytoplasmic localization. Although it has long been thought that cytoplasmic localization of connexin proteins is merely one of the mechanisms of the downregulation of GJIC, careful studies with human tumor samples have indicated that the expression level of intracytoplasmic connexin proteins correlates well with the grade of malignancy and the progression stage of tumors. Hypothesizing that intracytoplasmic connexin proteins should have their proper functions and that their increase should facilitate tumor progression such as cell migration, invasion and metastasis, we examined the effects of overexpressed connexin32 (Cx32) protein on the phenotype of human HuH7 hepatoma cells, which express a basal level of endogenous Cx32 only in cytoplasm. The cells were retrovirally transduced with the Tet-off Cx32 construct so that withdrawal of doxycycline from the culture medium could induce overexpression of Cx32 protein in cytoplasm. Even when overexpressed, Cx32 protein was retained in cytoplasm, i.e., Golgi apparatuses, and did not induce GJIC. However, overexpression of Cx32 protein in cytoplasm enhanced both the motility and the invasiveness of HuH7 cells and induced metastasis when the cells were xenografted into SCID mice. Taken together, cytoplasmic accumulation of connexin proteins may exert effects favorable for tumor progression.  相似文献   

10.
J Yang  G Qin  M Luo  J Chen  Q Zhang  L Li  L Pan  S Qin 《Cell death & disease》2015,6(7):e1829
Gefitinib efficiency in non-small-cell lung cancer (NSCLC) therapy is limited due to development of drug resistance. The molecular mechanisms of gefitinib resistance remain still unclear. In this study, we first found that connexin 26 (Cx26) is the predominant Cx isoform expressed in various NSCLC cell lines. Then, two gefitinib-resistant (GR) NSCLC cell lines, HCC827 GR and PC9 GR, from their parental cells were established. In these GR cells, the results showed that gefitinib resistance correlated with changes in cellular EMT phenotypes and upregulation of Cx26. Cx26 was detected to be accumulated in the cytoplasm and failed to establish functional gap-junctional intercellular communication (GJIC) either in GR cells or their parental cells. Ectopic expression of GJIC-deficient chimeric Cx26 was sufficient to induce EMT and gefitinib insensitivity in HCC827 and PC9 cells, while knockdown of Cx26 reversed EMT and gefitinib resistance in their GR cells both in vitro and in vivo. Furthermore, Cx26 overexpression could activate PI3K/Akt signaling in these cells. Cx26-mediated EMT and gefitinib resistance were significantly blocked by inhibition of PI3K/Akt pathway. Specifically, inhibition of the constitutive activation of PI3K/Akt pathway substantially suppressed Cx26 expression, and Cx26 was confirmed to functionally interplay with PI3K/Akt signaling to promote EMT and gefitinib resistance in NSCLC cells. In conclusion, the reciprocal positive regulation between Cx26 and PI3K/Akt signaling contributes to acquired gefitinib resistance in NSCLC cells by promoting EMT via a GJIC-independent manner.Lung cancer, of which non-small-cell lung cancer (NSCLC) is the most common form, remains the leading cause of cancer-related deaths worldwide.1 Currently, gefitinib, as the first epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is one of the most accepted therapies against NSCLC carrying EGFR mutations. However, almost all NSCLC patients who initially respond well to EGFR-TKIs eventually develop acquired resistance.2 Development of effective therapeutic interventions to overcome gefitinib resistance is an urgent need.Epithelial-mesenchymal transition (EMT), during which cancer cells lose epithelial markers such as E-cadherin but gain mesenchymal markers such as vimentin, is known to be deeply involved in cancer progression and chemotherapy resistance. Specially in NSCLC, EMT plays pivotal roles in the acquired resistance to EGFR-TKIs such as gefitinib.3, 4 For example, restoring E-cadherin expression or silencing EMT regulator Slug increases gefitinib sensitivity in NSCLC cells with a mesenchymal phenotype.5, 6 Accumulating evidences indicate that constitutively activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling is a central feature of EMT in many cancers including NSCLC.7, 8 However, the exact mechanism for the acquired gefitinib resistance of NSCLC remains unclear.Connexins (Cxs) are a family of transmembrane proteins, which compose the intercellular gap junctions between the neighboring cells.9 Gap junctions directly connect the cytoplasms of adjacent cells, thereby mediating direct exchange of signaling molecules smaller than 1 kDa, such as ions, small metabolites, and second messengers. This process is termed gap-junctional intercellular communication (GJIC). Cx expression and/or GJIC are frequently reduced or loss in malignant cell lines and cancers, while restoration of Cx expression and/or GJIC retarded tumor growth and increased cytotoxicities of chemotherapeutics such as cisplatin and docetaxel.10, 11, 12, 13 Therefore, Cxs have long been deemed tumor suppressors. However, increasing new observations were apparently contradicting the ''dogma'' and became clear that Cxs and GJIC also contribute to cancer progression and chemoresistance. For example, Cx32 expression was detected in breast cancer and significantly increased in lymph node metastases compared with primary tumors, suggesting Cx32 may be a sign of more malignant phenotype of breast cancer.14 Besides, cytoplasmic accumulation of Cx32 exerted favorable effects for hepatocellular carcinoma (HCC) progression including invasion and metastasis by Cx linked, but GJIC-independent mechanism.15 Recently, Gielen et al.16 reported that increasing the level of Cx43 confers temozolomide resistance in human glioma cells whereas knockdown of Cx43 sensitizes them to temozolomide treatment via both GJIC-dependent and -independent mechanisms.Up to now, there are ~21 isoforms of Cxs that distribute in almost all human organs in tissue-specific patterns.17 Cx26, one of the most common isoforms of Cxs, is predominantly expressed in lung tissue.18, 19 Despite Cx26 has been considered as a potential tumor suppressor or chemotherapy sensitizer in some types of tumors,20, 21 Ito et al.22 found that Cx26 helps lung squamous cell carcinoma (SCC, one histological type of NSCLC), acquire aggressive phenotypes, lymph node metastasis, and poor prognosis, indicating that a potential role of Cx26 on the malignant development of SCC. However, the roles of Cx26 and its derived GJIC in the development of gefitinib resistance in NSCLC have not been explored.In this study, to clarify the potential role of Cx26 and its derived GJIC in gefitinib resistance in NSCLC, we first surveyed the expression of four major Cxs in different gefitinib-sensitive NSCLC cell lines and found a positive correlation between high level of Cx26 and gefitinib insensitivity in NSCLC cells. Such an association was further confirmed in established gefitinib-resistant (GR) HCC827 and PC9 cell lines both in vitro and in vivo. Importantly, we find a positive mutual regulation between Cx26 and PI3K/Akt pathway, which confers acquired gefitinib resistance in NSCLC cells by GJIC-independent induction of EMT.  相似文献   

11.
The formation of aqueous intercellular channels mediating gap junctional intercellular coupling (GJIC) is a canonical function of connexins (Cx). In contrast, mechanisms of GJIC-independent involvement of connexins in cancer formation and metastasis remain a matter of debate. Because of the role of Cx43 in the determination of carcinoma cell invasive potential, we addressed the problem of the possible Cx43 involvement in early prostate cancer invasion. For this purpose, we analysed Cx43-positive DU-145 cell subsets established from the progenies of the cells most readily transmigrating microporous membranes. These progenies displayed motile activity similar to the control DU-145 cells but were characterized by elevated Cx43 expression levels and GJIC intensity. Thus, apparent links exist between Cx43 expression and transmigration potential of DU-145 cells. Moreover, Cx43 expression profiles in the analysed DU-145 subsets were not affected by intercellular contacts and chemical inhibition of GJIC during the transmigration. Our observations indicate that neither cell motility nor GJIC determines the transmigration efficiency of DU-145 cells. However, we postulate that selective transmigration of prostate cancer cells expressing elevated levels of Cx43 expression may be crucial for the “leading front” formation during cancer invasion.  相似文献   

12.
Growth inhibition by connexin26 expression in cultured rodent tumor cells   总被引:6,自引:0,他引:6  
The Connexin (Cx) gene family acts as a tumor suppressor. However, it is unclear whether the tumor-suppressing activity acquired by Cx gene transfection is mainly due to the recovery of the gap junction-mediated intercellular communication (GJIC) or to other unknown mechanisms. In order to elucidate the mechanism of the Cx-induced tumor-suppressing activity, we transfected Cx26 cDNA into a rodent mammary tumor cell-line (BICR-M1Rk) in which Cx43 had been normally expressed and a typical pattern of GJIC had been observed. The exogenous Cx26 was mainly localized on the nuclear envelope, whereas most of the endogenous Cx43 resided at the plasma membrane of the transfected BICR-M1Rk. Consistent with the localization of Cx26, GJIC was not increased upon the transfection of Cx26 when it was assessed by a scrape-loading dye transfer technique. A conventional [3H]-thymidine incorporation study showed that the growth rate of the Cx26-transfected cells was significantly decreased (70%), compared to that of the control BICR-M1Rk. Therefore, our results clearly demonstrate that the exogenously expressed Cx26 in the BICR-M1Rk cancer cell-line exerts an anti-proliferate activity in a GJIC-independent manner.  相似文献   

13.
14.
15.
16.
Gap junctional intercellular communication (GJIC) is thought to play a crucial role in cell differentiation. Small gap junction plaques are frequently associated with tight junction strands in hepatocytes, suggesting that gap junctions may be closely related to the role of tight junctions in the establishment of cell polarity. To examine the exact role of gap junctions in regulating tight junctions, we transfected connexin 32 (Cx32), Cx26, or Cx43 cDNAs into immortalized mouse hepatocytes derived from Cx32-deficient mice and examined the expression and function of the endogenous tight junction molecules. In transient wild-type Cx32 transfectants, immunocytochemistry revealed that endogenous occludin was in part localized at cell borders, where it was colocalized with Cx32, whereas neither was detected in parental cells. In Cx32 null hepatocytes transfected with Cx32 truncated at position 220 (R220stop), wild-type Cx26, or wild-type Cx43 cDNAs, occludin was not detected at cell borders. In stable wild-type Cx32 transfectants, occludin, claudin-1, and ZO-1 mRNAs and proteins were significantly increased compared to parental cells and all of the proteins were colocalized with Cx32 at cell borders. Treatment with a GJIC blocker, 18 beta-glycyrrhetinic acid, resulted in decreases of occludin and claudin-1 at cell borders in the stable transfectants. The induction of tight junction proteins in the stable transfectants was accompanied by an increase in both fence and barrier functions of tight junctions. Furthermore, in the stable transfectants, circumferencial actin filaments were also increased without a change of actin protein. These results indicate that Cx32 formation and/or Cx32-mediated intercellular communication may participate in the formation of functional tight junctions and actin organization.  相似文献   

17.
We have characterized the function of connexin (Cx) 32 gene mutations found in X-linked dominant Charcot-Marie-Tooth disease with respect to their ability to form functional gap junctions among themselves and to inactivate wild-type Cx32 by a dominant negative mechanism. We prepared four types of Cx32 mutant cDNAs and transfected them into HeLa cells, which do not show detectable levels of gap junctional intercellular communication (GJIC), nor expression of any connexins examined. Cells transfected with the wild-type Cx32 gene, but not those transfected with three different base substitution mutations (i.e. Cys 60 to Phe, Val 139 to Met, and Arg 215 to Trp), restored GJIC. Unexpectedly, in cells transfected with a nonsense mutant at codon 220, there was also restored GJIC. When we double-transfected these mutant constructs into the HeLa cells that had already been transfected with the wild-type Cx32 gene and thus were GJIC proficient, three base substitution mutants inhibited GJIC, suggesting that these three mutants can eliminate the function of wild-type Cx32 in a dominant negative manner. The nonsense mutation at codon 220 did not show such a dominant negative effect. Since both mutant and wild-type Cx32 mRNAs were detected, but only poor Cx32 protein expression at cell-cell contact areas was observed in the double transfectants, it is suggested that certain mutants form nonfunctional chimeric connexons with wild-type connexins, which are not properly inserted into the cytoplasmic membrane.  相似文献   

18.
Functional intact liver organoid can be reconstructed in a radial-flow bioreactor when human hepatocellular carcinoma (FLC-5), mouse immortalized sinusoidal endothelial M1 (SEC) and A7 (HSC) hepatic stellate cell lines are cocultured. The structural and functional characteristics of the reconstructed organoid closely resemble the in vivo liver situation. Previous liver organoid studies indicated that cell-to-cell communications might be an important factor for the functional and structural integrity of the reconstructed organoid, including the expression of fenestrae. Therefore, we examined the possible relationship between functional intact gap junctional intercellular communication (GJIC) and fenestrae dynamics in M1-SEC cells. The fine morphology of liver organoid was studied in the presence of (1) irsogladine maleate (IM), (2) oleamide and (3) oleamide followed by IM treatment. Fine ultrastructural changes were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and compared with control liver organoid data. TEM revealed that oleamide affected the integrity of cell-to-cell contacts predominantly in FLC-5 hepatocytes. SEM observation showed the presence of fenestrae on M1-SEC cells; however, oleamide inhibited fenestrae expression on the surface of endothelial cells. Interestingly, fenestrae reappeared when IM was added after initial oleamide exposure. GJIC mediates the number of fenestrae in endothelial cells of the liver organoid.  相似文献   

19.
Connexin 43 (Cx43)-mediated gap junction intercellular communication (GJIC) plays a crucial role in the pathology and physiology of joint tissues. Transforming growth factor-β2 (TGF-β2), one of the potent regulatory factors in chondrocytes, plays a key role in the regulation of cell cycle and development of joint diseases. However, it is still unknown how TGF-β2 mediates GJIC in chondrocytes. The aim of this study was to explore the potential mechanism by which TGF-β2 regulates GJIC in chondrocytes. CCK-8 assays and scratch assays were performed to define the role of TGF-β2 on cell proliferation and migration. The scrape loading/dye transfer assay and scanning electron microscopy (SEM) were used to verify the effect of TGF-β2 on GJIC between chondrocytes. qPCR was performed to analyse the expression of genes in the gap junction protein family in chondrocytes. The expression of the Cx43 protein and phosphorylated Smad3 (p-Smad3) was evaluated by western blot assay. Immunofluorescence staining was used to explore p-Smad3 signalling pathway activation and Cx43 distribution. From these experiments, we found that the Cx43 protein was the most highly expressed member of the gap junction protein family in chondrocytes. We also found that TGF-β2 facilitated cell-to-cell communication in chondrocytes by upregulating Cx43 expression in chondrocytes. Finally, we found that TGF-β2 activated Smad3 signalling and promoted the nuclear aggregation of p-Smad3. Inhibition experiments by SIS3 also confirmed that TGF-β2-mediated GJIC through p-Smad3 signalling. For the first time, this study confirmed that TGF-β2 could regulate the formation of Cx43-mediated GJIC in chondrocytes via the canonical p-Smad3 signalling pathway.  相似文献   

20.
Genetic ablation of connexin37 (Cx37) or connexin43 (Cx43), the two gap junction proteins expressed by mouse ovarian granulosa cells, has been shown to result in impaired follicle development. We used patch-clamp techniques to evaluate quantitatively the contribution of these connexins to gap junctional intercellular communication (GJIC) among granulosa cells. The coupling conductance derived from a voltage step-induced capacitive current transient was used as a measure of GJIC in cultured granulosa cells. Using this method, we determined that the conductance of wild-type (84.1 ± 28.6 nS; n = 6) and Cx37-deficient granulosa cells (83.7 ± 6.4 nS; n = 11) does not differ significantly (P = 0.35), suggesting a limited contribution, if any, of Cx37 to granulosa cell coupling. In contrast, the conductance between granulosa cells of Cx43-deficient mice (2.6 ± 0.8 nS; n = 5) was not significantly different from that of single, isolated wild-type granulosa cells (2.5 ± 0.7 nS, n = 5; P = 0.83), indicating that Cx43-deficient granulosa cells were not electrically coupled. A direct measurement of transjunctional conductance between isolated granulosa cell pairs using a dual patch-clamp technique confirmed this conclusion. Interestingly, a partial rescue of folliculogenesis was observed when the Cx43-null mutation in C57BL/6 mice was crossed into the CD1 strain, and capacitive current measurement demonstrated that this rescue was not due to reestablishment of GJIC. These results demonstrate that folliculogenesis is impaired in the absence of GJIC between granulosa cells, but they also indicate that the severity is dependent on genetic background, a phenomenon that cannot be attributed to the expression of additional connexins. ovarian follicle; oogenesis; connexin37; intercellular communication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号