首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 7th cholera pandemic reached Latin America in 1991, spreading from Peru to virtually all Latin American countries. During the late epidemic period, a strain that failed to ferment sucrose dominated cholera outbreaks in the Northern Brazilian Amazon region. In order to understand the genomic characteristics and the determinants of this altered sucrose fermenting phenotype, the genome of the strain IEC224 was sequenced. This paper reports a broad genomic study of this strain, showing its correlation with the major epidemic lineage. The potentially mobile genomic regions are shown to possess GC content deviation, and harbor the main V. cholera virulence genes. A novel bioinformatic approach was applied in order to identify the putative functions of hypothetical proteins, and was compared with the automatic annotation by RAST. The genome of a large bacteriophage was found to be integrated to the IEC224's alanine aminopeptidase gene. The presence of this phage is shown to be a common characteristic of the El Tor strains from the Latin American epidemic, as well as its putative ancestor from Angola. The defective sucrose fermenting phenotype is shown to be due to a single nucleotide insertion in the V. cholerae sucrose-specific transportation gene. This frame-shift mutation truncated a membrane protein, altering its structural pore-like conformation. Further, the identification of a common bacteriophage reinforces both the monophyletic and African-Origin hypotheses for the main causative agent of the 1991 Latin America cholera epidemics.  相似文献   

2.
Epidemics and pandemics of cholera, a severe diarrheal disease, have occurred since the early 19th century and waves of epidemic disease continue today. Cholera epidemics are caused by individual, genetically monomorphic lineages of Vibrio cholerae: the ongoing seventh pandemic, which has spread globally since 1961, is associated with lineage L2 of biotype El Tor. Previous genomic studies of the epidemiology of the seventh pandemic identified three successive sub-lineages within L2, designated waves 1 to 3, which spread globally from the Bay of Bengal on multiple occasions. However, these studies did not include samples from China, which also experienced multiple epidemics of cholera in recent decades. We sequenced the genomes of 71 strains isolated in China between 1961 and 2010, as well as eight from other sources, and compared them with 181 published genomes. The results indicated that outbreaks in China between 1960 and 1990 were associated with wave 1 whereas later outbreaks were associated with wave 2. However, the previously defined waves overlapped temporally, and are an inadequate representation of the shape of the global genealogy. We therefore suggest replacing them by a series of tightly delineated clades. Between 1960 and 1990 multiple such clades were imported into China, underwent further microevolution there and then spread to other countries. China was thus both a sink and source during the pandemic spread of V. cholerae, and needs to be included in reconstructions of the global patterns of spread of cholera.  相似文献   

3.
The problems of the evolution of cholera at the stages of its pandemic spread are described. A short characterization of endemic zones in the countries of Asia, Africa and Latin America, stipulating the preservation of infection and the appearance of periodic epidemics in the world, is presented. Special attention is paid to the genesis of epidemic outbreaks in endemic and introduced foci of cholera, differing in the specific features of their formation and the accumulation of the epidemic variant of the infective agent in aqueous habitat. The role of the ecosystem of surface water reservoirs in the prolonged survival of cholera vibrios is evaluated. The necessity of the detailed study of the mechanisms and forms of existence of serogroup 0139 vibrio in open water reservoirs is substantiated. In the system of epidemiological surveillance on cholera the microbiological monitoring of environmental objects assumes the leading importance.  相似文献   

4.
An environmental source of cholera was hypothesized as early as the late nineteenth century by Robert Koch, but not proven because of the ability of Vibrio cholera, the causative agent of cholera, to enter a dormant phase between epidemics. Standard bacteriological procedures for isolation of the vibrios from the environmental samples, including water, between epidemics generally were unsuccessful. Vibrio cholera, a marine vibrio requiring salt for growth, enters into a dormant 'viable but non-culturable' stage when conditions are unfavourable for growth and reproduction. The association of V. cholera with plankton, notably copepods, provides evidence for the environmental origin of cholera, as well as an explanation for the sporadic and erratic nature of cholera epidemics. Thus, the association of V. cholera with plankton was established only recently, allowing analysis of epidemic patterns of cholera, especially in those countries where cholera is endemic. The sporadic and erratic nature of cholera epidemics can now be related to climate and climate events, such as El Ni?o. Since zooplankton have been shown to harbour the bacterium and zooplankton blooms follow phytoplankton blooms, remote sensing can be employed to determine the relationship of cases of cholera with chlorophyll, as well as sea surface temperature (SST), ocean height, and turbidity. Cholera occurs seasonally in Bangladesh with two annual peaks in the number of cases occurring each year. From the data obtained and analysed to date, when the height of the ocean is high and sea surface temperature is also elevated, cholera cases are numerous. When the height is low and sea surface temperature is also low, little or no cholera is recorded. From the examination of data for the 1992-1993 cholera epidemic in India, preliminary comparisons of cholera data for Calcutta show a similar relationship between cholera cases, ocean height and SST. In conclusion, from results of studies of SST, phytoplankton and zooplankton, and their relationships to incidence of cholera, correlation of selected climatological factors and incidence of V. cholera appears to be significant, bringing the potential of predicting conditions conducive to cholera outbreaks closer to reality.  相似文献   

5.
The worldwide epidemiological situation in cholera El Tor at the beginning of this century is presented; among its characteristic features are continued extensive epidemics and outbreaks in African and Asian countries with cases of import of this infection to other continents. Outbreaks caused by a new variant of the infective agent of cholera, Vibrio cholerae O139, are still registered at limited territories in the countries of South-East Asia. In some CIS countries (Azerbaijan, Kazakhstan and Russia) unstable situation in cholera is still preserved due to cases of infection import mainly from Asian countries, as well as to the isolation of epidemically insignificant haemolysin-positive and haemolysin-negative V. cholerae O1 and O139, containing no ctx and tcpA genes, from surface water reservoirs and other environmental objects. In Russia prognosis for cholera is still unfavorable.  相似文献   

6.

Background

During the last eight years, North and South Kivu, located in a lake area in Eastern Democratic Republic of Congo, have been the site of a major volcano eruption and of numerous complex emergencies with population displacements. These conditions have been suspected to favour emergence and spread of cholera epidemics.

Methodology/Principal Findings

In order to assess the influence of these conditions on outbreaks, reports of cholera cases were collected weekly from each health district of North Kivu (4,667,699 inhabitants) and South Kivu (4,670,121 inhabitants) from 2000 through 2007. A geographic information system was established, and in each health district, the relationships between environmental variables and the number of cholera cases were assessed using regression techniques and time series analysis. We further checked for a link between complex emergencies and cholera outbreaks. Finally, we analysed data collected during an epidemiological survey that was implemented in Goma after Nyiragongo eruption. A total of 73,605 cases and 1,612 deaths of cholera were reported. Time series decomposition showed a greater number of cases during the rainy season in South Kivu but not in North Kivu. Spatial distribution of cholera cases exhibited a higher number of cases in health districts bordering lakes (Odds Ratio 7.0, Confidence Interval range 3.8–12.9). Four epidemic reactivations were observed in the 12-week periods following war events, but simulations indicate that the number of reactivations was not larger than that expected during any random selection of period with no war. Nyiragongo volcanic eruption was followed by a marked decrease of cholera incidence.

Conclusion/Significance

Our study points out the crucial role of some towns located in lakeside areas in the persistence of cholera in Kivu. Even if complex emergencies were not systematically followed by cholera epidemics, some of them enabled cholera spreading.  相似文献   

7.
Evidence that infectious diseases cause wildlife population extirpation or extinction remains anecdotal and it is unclear whether the impacts of a pathogen at the individual level can scale up to population level so drastically. Here, we quantify the response of a Common eider colony to emerging epidemics of avian cholera, one of the most important infectious diseases affecting wild waterfowl. We show that avian cholera has the potential to drive colony extinction, even over a very short period. Extinction depends on disease severity (the impact of the disease on adult female survival) and disease frequency (the number of annual epidemics per decade). In case of epidemics of high severity (i.e., causing >30% mortality of breeding females), more than one outbreak per decade will be unsustainable for the colony and will likely lead to extinction within the next century; more than four outbreaks per decade will drive extinction to within 20 years. Such severity and frequency of avian cholera are already observed, and avian cholera might thus represent a significant threat to viability of breeding populations. However, this will depend on the mechanisms underlying avian cholera transmission, maintenance, and spread, which are currently only poorly known.  相似文献   

8.
Reactive vaccination has recently been adopted as an outbreak response tool for cholera and other infectious diseases. Owing to the global shortage of oral cholera vaccine, health officials must quickly decide who and where to distribute limited vaccine. Targeted vaccination in transmission hotspots (i.e. areas with high transmission efficiency) may be a potential approach to efficiently allocate vaccine, however its effectiveness will likely be context-dependent. We compared strategies for allocating vaccine across multiple areas with heterogeneous transmission efficiency. We constructed metapopulation models of a cholera-like disease and compared simulated epidemics where: vaccine is targeted at areas of high or low transmission efficiency, where vaccine is distributed across the population, and where no vaccine is used. We find that connectivity between populations, transmission efficiency, vaccination timing and the amount of vaccine available all shape the performance of different allocation strategies. In highly connected settings (e.g. cities) when vaccinating early in the epidemic, targeting limited vaccine at transmission hotspots is often optimal. Once vaccination is delayed, targeting the hotspot is rarely optimal, and strategies that either spread vaccine between areas or those targeted at non-hotspots will avert more cases. Although hotspots may be an intuitive outbreak control target, we show that, in many situations, the hotspot-epidemic proceeds so fast that hotspot-targeted reactive vaccination will prevent relatively few cases, and vaccination shared across areas where transmission can be sustained is often best.  相似文献   

9.
Vibrio cholerae, a Gram-negative bacterium belonging to the gamma-subdivision of the family Proteobacteriaceae is the etiologic agent of cholera, a devastating diarrheal disease which occurs frequently as epidemics. Any bacterial species encountering a broad spectrum of environments during the course of its life cycle is likely to develop complex regulatory systems and stress adaptation mechanisms to best survive in each environment encountered. Toxigenic V. cholerae, which has evolved from environmental nonpathogenic V. cholerae by acquisition of virulence genes, represents a paradigm for this process in that this organism naturally exists in an aquatic environment but infects human beings and cause cholera. The V. cholerae genome, which is comprised of two independent circular mega-replicons, carries the genetic determinants for the bacterium to survive both in an aquatic environment as well as in the human intestinal environment. Pathogenesis of V. cholerae involves coordinated expression of different sets of virulence associated genes, and the synergistic action of their gene products. Although the acquisition of major virulence genes and association between V. cholerae and its human host appears to be recent, and reflects a simple pathogenic strategy, the establishment of a productive infection involves the expression of many more genes that are crucial for survival and adaptation of the bacterium in the host, as well as for its onward transmission and epidemic spread. While a few of the virulence gene clusters involved directly with cholera pathogenesis have been characterized, the potential exists for identification of yet new genes which may influence the stress adaptation, pathogenesis, and epidemiological characteristics of V. cholerae. Coevolution of bacteria and mobile genetic elements (plasmids, transposons, pathogenicity islands, and phages) can determine environmental survival and pathogenic interactions between bacteria and their hosts. Besides horizontal gene transfer mediated by genetic elements and phages, the evolution of pathogenic V. cholerae involves a combination of selection mechanisms both in the host and in the environment. The occurrence of periodic epidemics of cholera in endemic areas appear to enhance this process.  相似文献   

10.
Rita Colwell  Anwar Huq 《Hydrobiologia》2001,460(1-3):141-145
Historically, most of the major epidemics or outbreaks of cholera around the world have originated in coastal regions. The most dramatic of recent outbreaks of cholera occurred in India and Bangladesh in 1991, followed by an outbreak of cholera after almost a century without cholera in South America in 1991. Both of these recent epidemics were reported first in the coastal regions of India and Peru, respectively. Cholera epidemics are seasonal, occurring during the spring and fall months. Outbreaks of cholera in noncholera epidemic areas have been ascribed to travel and shipping activities, but there is compelling evidence that V. cholerae always is present in the aquatic environment and proliferates under nonepidemic conditions while attached to, or associated with, eucaryotic organisms. It is hypothesized that climate directly influences the incidence and geographic distribution of the cholera bacterium.  相似文献   

11.
Cholera epidemics in South and Central America in the period 1991-1999 are characterized. The mechanisms of existence of Vibrio eltor in environmental objects have been substantiated. The causes and conditions of endemic foci formation which determine the infection spread not only within the countries of the subcontinent, but also far beyond its borders are shown. The effectiveness of cholera control interventions is evaluated.  相似文献   

12.
Cholera, a diarrheal disease, is known for explosive epidemics that can quickly kill thousands. Endemic cholera is a seasonal torment that also has a significant mortality. Not all nations with extensive rural communities can achieve the required infrastructure or behavioral changes to prevent epidemic or endemic cholera. For some communities, a single-dose cholera vaccine that protects those at risk is the most efficacious means to reduce morbidity and mortality. It is clear that our understanding of what a protective cholera immune response is has not progressed at the rate our understanding of the pathogenesis and molecular biology of cholera infection has. This review addresses V. cholerae lipopolysaccharide (LPS)-based immunogens because LPS is the only immunogen proven to induce protective antibody in humans. We discuss the role of anti-LPS antibodies in protection from cholera, the importance and the potential role of B cell subsets in protection that is based on their anatomical location and the intrinsic antigen-receptor specificity of various subsets is introduced.  相似文献   

13.

Background

Bovine respiratory syncytial virus (BRSV) is one of the major pathogens involved in the bovine respiratory disease (BRD) complex. The seroprevalence to BRSV in Norwegian cattle herds is high, but its role in epidemics of respiratory disease is unclear. The aims of the study were to investigate the etiological role of BRSV and other respiratory viruses in epidemics of BRD and to perform phylogenetic analysis of Norwegian BRSV strains.

Results

BRSV infection was detected either serologically and/or virologically in 18 (86%) of 21 outbreaks and in most cases as a single viral agent. When serology indicated that bovine coronavirus and/or bovine parainfluenza virus 3 were present, the number of BRSV positive animals in the herd was always higher, supporting the view of BRSV as the main pathogen. Sequencing of the G gene of BRSV positive samples showed that the current circulating Norwegian BRSVs belong to genetic subgroup II, along with other North European isolates. One isolate from an outbreak in Norway in 1976 was also investigated. This strain formed a separate branch in subgroup II, clearly different from the current Scandinavian sequences. The currently circulating BRSV could be divided into two different strains that were present in the same geographical area at the same time. The sequence variations between the two strains were in an antigenic important part of the G protein.

Conclusion

The results demonstrated that BRSV is the most important etiological agent of epidemics of BRD in Norway and that it often acts as the only viral agent. The phylogenetic analysis of the Norwegian strains of BRSV and several previously published isolates supported the theory of geographical and temporal clustering of BRSV.  相似文献   

14.
The world is experiencing a pandemic of influenza that emerged in March 2009, due to a novel strain designated influenza A/H1N1 2009. This strain is closest in molecular sequence to swine influenza viruses, but differs from all previously known influenza by a minimum of 6.1%, and from prior “seasonal” H1N1 by 27.2%, giving it great potential for widespread human infection. While spread into India was delayed for two months by an aggressive interdiction program, since 1 August 2009 most cases in India have been indigenous. H1N1 2009 has differentially struck younger patients who are naïve susceptibles to its antigenic subtype, while sparing those >60 who have crossreactive antibody from prior experience with influenza decades ago and the 1977 “swine flu” vaccine distributed in the United States. It also appears to more severely affect pregnant women. It emanated from a single source in central Mexico, but its precise geographical and circumstantial origins, from either Eurasia or the Americas, remain uncertain. While currently a mild pandemic by the standard of past pandemics, the seriousness of H1N1 2009 especially among children should not be underestimated. There is potential for the virus, which continues to adapt to humans, to change over time into a more severe etiologic agent by any of several foreseeable mutations. Mass acceptance of the novel H1N1 2009 vaccine worldwide will be essential to its control. Having spread globally in a few months, affecting millions of people, it is likely to remain circulating in the human population for a decade or more.  相似文献   

15.
Cholera is typically considered endemic in West Africa, especially in the Republic of Guinea. However, a three-year lull period was observed from 2009 to 2011, before a new epidemic struck the country in 2012, which was officially responsible for 7,350 suspected cases and 133 deaths. To determine whether cholera re-emerged from the aquatic environment or was rather imported due to human migration, a comprehensive epidemiological and molecular survey was conducted. A spatiotemporal analysis of the national case databases established Kaback Island, located off the southern coast of Guinea, as the initial focus of the epidemic in early February. According to the field investigations, the index case was found to be a fisherman who had recently arrived from a coastal district of neighboring Sierra Leone, where a cholera outbreak had recently occurred. MLVA-based genotype mapping of 38 clinical Vibrio cholerae O1 El Tor isolates sampled throughout the epidemic demonstrated a progressive genetic diversification of the strains from a single genotype isolated on Kaback Island in February, which correlated with spatial epidemic spread. Whole-genome sequencing characterized this strain as an “atypical” El Tor variant. Furthermore, genome-wide SNP-based phylogeny analysis grouped the Guinean strain into a new clade of the third wave of the seventh pandemic, distinct from previously analyzed African strains and directly related to a Bangladeshi isolate. Overall, these results highly suggest that the Guinean 2012 epidemic was caused by a V. cholerae clone that was likely imported from Sierra Leone by an infected individual. These results indicate the importance of promoting the cross-border identification and surveillance of mobile and vulnerable populations, including fishermen, to prevent, detect and control future epidemics in the region. Comprehensive epidemiological investigations should be expanded to better understand cholera dynamics and improve disease control strategies throughout the African continent.  相似文献   

16.

Background

During the 2012 cholera outbreak in the Republic of Guinea, the Ministry of Health, supported by Médecins Sans Frontières - Operational Center Geneva, used the oral cholera vaccine Shanchol as a part of the emergency response. The rapid diagnostic test (RDT) Crystal VC, widely used during outbreaks, detects lipopolysaccharide antigens of Vibrio cholerae O1 and O139, both included in Shanchol. In the context of reactive use of a whole-cell cholera vaccine in a region where cholera cases have been reported, it is essential to know what proportion of vaccinated individuals would be reactive to the RDT and for how long after vaccination.

Methodology/Principal Findings

A total of 108 vaccinated individuals, selected systematically among all persons older than one year, were included at vaccination sites and 106 were included in the analysis. Stools samples of this cohort of vaccinated participants were collected and tested with the RDT every day until the test was negative for two consecutive visits or for a maximum of 7 days. A total of 94.3% of cholera vaccine recipients had a positive test after vaccination; all except one of these positive results were reactive only with the O139 antigen. The mean time to become negative in those with an initial positive result after vaccination was 3.8 days, standard deviation 1.1 days.

Conclusions/Significance

The RDT Crystal VC becomes positive in persons recently vaccinated against cholera, although almost exclusively to the O139 antigen. This reactivity largely disappeared within five days after vaccination. These results suggest that the test can be used normally as soon as 24 hours after vaccination in a context of O1 epidemics, which represent the vast majority of cases, and after a period of five days in areas where V. cholerae O139 is present. The reason why only O139 test line became positive remains to be investigated.  相似文献   

17.
We present new and revised data for the phocine distemper virus (PDV) epidemics that resulted in the deaths of more than 23 000 harbour seals Phoca vitulina in 1988 and 30,000 in 2002. On both occasions the epidemics started at the Danish island of Anholt in central Kattegat, and subsequently spread to adjacent colonies in a stepwise fashion. However, this pattern was not maintained throughout the epidemics and new centres of infection appeared far from infected populations on some occasions: in 1988 early positive cases were observed in the Irish Sea, and in 2002 the epidemic appeared in the Dutch Wadden Sea, 6 wk after the initiation of the outbreak at Anholt Island. Since the harbour seal is a rather sedentary species, such 'jumps' in the spread among colonies suggest that another vector species could have been involved. We discussed the role of sympatric species as disease vectors, and suggested that grey seal populations could act as reservoirs for PDV if infection rates in sympatric species are lower than in harbour seals. Alternatively, grey seals could act as subclinical infected carriers of the virus between Arctic and North Sea seal populations. Mixed colonies of grey and harbour seal colonies are found at all locations where the jumps occurred. It seems likely that grey seals, which show long-distance movements, contributed to the spread among regions. The harbour seal populations along the Norwegian coast and in the Baltic escaped both epidemics, which could be due either to genetic differences among harbour seal populations or to immunity. Catastrophic events such as repeated epidemics should be accounted for in future models and management strategies of wildlife populations.  相似文献   

18.
The Vibrio cholerae bacterium is the agent of cholera. The capacity to produce the cholera toxin, which is responsible for the deadly diarrhea associated with cholera epidemics, is encoded in the genome of a filamentous phage, CTXφ. Rolling-circle replication (RCR) is central to the life cycle of CTXφ because amplification of the phage genome permits its efficient integration into the genome and its packaging into new viral particles. A single phage-encoded HUH endonuclease initiates RCR of the proto-typical filamentous phages of enterobacteriaceae by introducing a nick at a specific position of the double stranded DNA form of the phage genome. The rest of the process is driven by host factors that are either essential or crucial for the replication of the host genome, such as the Rep SF1 helicase. In contrast, we show here that the histone-like HU protein of V. cholerae is necessary for the introduction of a nick by the HUH endonuclease of CTXφ. We further show that CTXφ RCR depends on a SF1 helicase normally implicated in DNA repair, UvrD, rather than Rep. In addition to CTXφ, we show that VGJφ, a representative member of a second family of vibrio integrative filamentous phages, requires UvrD and HU for RCR while TLCφ, a satellite phage, depends on Rep and is independent from HU.  相似文献   

19.
The outbreak of cholera in the Pushkino District of the Azerbaijan SSR, caused by the penetration of Vibrio cholerae into the water of the irrigation system, is described. Altogether 2 cholera patients and 39 Vibrio carriers were detected. The etiological agent of this infection was V. cholerae eltor, serovar Ogawa, with typical phenotype characteristics. From all patients and 37 carriers virulent strains and from 2 carriers faintly virulent strains were isolated. In this outbreak family foci were clearly observed, but the transmission of infection through everyday contacts was practically of no importance. The foci with multiple cases were formed due to the action of one transmission factor: contaminated water.  相似文献   

20.
BackgroundBangladesh experienced a sudden, large influx of forcibly displaced persons from Myanmar in August 2017. A cholera outbreak occurred in the displaced population during September-December 2019. This study aims to describe the epidemiologic characteristics of cholera patients who were hospitalized in diarrhea treatment centers (DTCs) and sought care from settlements of Forcibly Displaced Myanmar Nationals (FDMN) as well as host country nationals during the cholera outbreak.MethodsDiarrhea Treatment Center (DTC) based surveillance was carried out among the FDMN and host population in Teknaf and Leda DTCs hospitalized for cholera during September-December 2019.ResultsDuring the study period, 147 individuals with cholera were hospitalized. The majority, 72% of patients reported to Leda DTC. Nearly 65% sought care from FDMN settlements. About 47% of the cholera individuals were children less than 5 years old and 42% were aged 15 years and more. Half of the cholera patients were females. FDMN often reported from Camp # 26 (45%), followed by Camp # 24 (36%), and Camp # 27 (12%). Eighty-two percent of the cholera patients reported watery diarrhea. Some or severe dehydration was observed in 65% of cholera individuals. Eighty-one percent of people with cholera received pre-packaged ORS at home. About 88% of FDMN cholera patients reported consumption of public tap water. Pit latrine without water seal was often used by FDMN cholera individuals (78%).ConclusionVigilance for cholera patients by routine surveillance, preparedness, and response readiness for surges and oral cholera vaccination campaigns can alleviate the threats of cholera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号