首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cardiac gap junctions were reconstituted into liposomes. To determine if reconstitution resulted in membrane channel formation, we developed an assay for channel function that used a liposome-entrapped peroxidase to detect entry of a substrate into the liposome. The data demonstrate, for the first time, that reconstituted gap junctions from heart are capable of channel-forming activity in artificial membranes.  相似文献   

2.
3.
Human sperm head ultrastructure: a freeze-etching study   总被引:3,自引:0,他引:3  
  相似文献   

4.
Summary Particles and pits of freeze-fractured gap junctions are considered as complementary structures despite the frequent observations of more regular and closer spacings of pits, ascribed to plastic deformation of particle arrays. Recently, however, the noncomplementarity of pits and particles in Purkinje fibers has been reported. To ascertain the relationship between both structures, gap junctions from fixed, cryoprotected liver and myocardium were investigated using spacing and density measurements and complementary replicas.In hepatocyte gap junctions, the center-to-center distances (mean±sd) among pits, 9.57±1.49 nm, and particles, 9.70±1.77 nm, are not significantly different. Density determinations yielded a slightly higher value for the pits, (11,510±830)/m2, than for the particles, (11,230±950)/m2. In the myocardium, the spacing of the regularly arrayed pits, 9.55±1.33 nm barely exceeds the value of 9.44±1.62 nm for the particles, which show some clustering. However, the packing density for the pits, (10,090±740)/m2, appears a little higher than that of the particles (9,890±920)/m2. As density and spacing measurements provided no decisive answers, the positions of individual pits and particles of complementary junctional faces were recorded on transparent sheets and compared. In this fashion, a one-to-one correspondence between particles and pits could be established, while small discrepancies may be attributed to plastic deformation. Moreover, the collinearity of pits and particles may be suggested by the observation of a platinum grain in the center of many pits.  相似文献   

5.
Freeze-cleave replicas of adult rat diaphragm have revealed the presence of numerous small rectangular arrays of 60 Å particles (respectively pits) on the fracture faces of the sarcolemmas of the myofibers. Since these fibers are separated by thick basal laminae and are not electrically coupled we conclude that the rectangular arrays are not morphological equivalents of gap junctions as suggested by Staehelin [14]. The term “type III gap junctions” for these arrays therefore should be discontinued.  相似文献   

6.
We have used freeze-etching to visualize the capsomers on T2 bacteriophage heads and hence to determine the surface lattice. The overall capsid arrangement appears to follow the general principle of quasi-equivalence. Thus, the bacteriophage capsid is constructed of two 5-fold symmetry end-caps based on T = 13 icosahedral symmetry, separated by a near-equatorial band of 20 additional capsomers.  相似文献   

7.
The membrane topology of connexin32, a principal polypeptide of gap junctions in diverse cell types, has been studied in rat and mouse hepatocyte gap junctions using site-specific antisera raised against synthetic oligopeptides corresponding to amino acid sequences deduced from cDNA clones. Based on published hydropathicity maps and identified protease-sensitive cleavage sites, oligopeptides were synthesized corresponding to two hydrophilic domains of connexin32, one predicted to face the cytoplasm, the other predicted to be directed extracellularly. Antisera were raised to keyhole limpet hemocyanin conjugates of the oligopeptides and used to map the distribution of their antigens using indirect immunocytochemistry on isolated gap junctions. The results directly demonstrated the cytoplasmic orientation of an antigen contained within amino acids 98-124 of the connexin32 sequence. The extracellular space in intact, isolated gap junctions is too small to permit binding of antibody molecules, necessitating the experimental separation of the junctional membranes to expose their extracellular surfaces using a urea/alkali procedure. While an antigen contained within amino acids 164-189 was visualized on the extracellular surfaces of some of the separated junctional membranes, variability in the observations and in the splitting procedure left ambiguities concerning the biological relevance of the observations after the denaturing conditions necessary to separate the junctional membranes. Using a different approach, however, the antigen could be exposed in intact liver using a hypertonic disaccharide junction-splitting procedure. The period of time of antigen exposure at the cell surface appears to peak at 30 s and disappear by 2-4 min. Taken together, these data demonstrate the extracellular orientation of an antigen contained within amino acids 164-189, which may be involved in cell-cell interaction within the gap junction.  相似文献   

8.
A procedure for the preparation of a gap junction fraction from the uteri of pregnant rats is described. The uterine gap junctions, when examined by electron microscopy of thin sections and in negatively stained preparations, were similar to gap junctions isolated from heart and liver. Major proteins of similar apparent molecular weight (Mr 28,000) were found in gap junction fractions isolated from the uterus, heart, and liver, and were shown to have highly homologous structures by two-dimensional mapping of their tryptic peptides. An Mr 10,000 polypeptide, previously deduced to be a proteolytic product of the Mr 28,000 polypeptide of rat liver (Nicholson, B. J., L. J. Takemoto, M. W. Hunkapiller, L. E. Hood, and J.-P. Revel, 1983, Cell, 32:967-978), was also studied and shown by chymotryptic mapping to be homologous in the uterine, heart, and liver gap junction fractions. An antibody raised in rabbits to a synthetic peptide corresponding to an amino-terminal sequence of the liver gap junction protein recognized Mr 28,000 proteins in the three tissues studied, showing that the proteins shared common antigenic determinants. These results indicate that gap junctions are biochemically conserved plasma membrane specializations. The view that gap junctions are tissue-specific plasma membrane organelles based on previous comparisons of Mr 26,000-30,000 polypeptides is not sustained by the present results.  相似文献   

9.
Structure of a gap junction gene: Rat connexin-32   总被引:5,自引:0,他引:5  
  相似文献   

10.
Molecular organization of gap junctions   总被引:4,自引:0,他引:4  
Highly purified gap junction fractions from heart and liver contain a single major protein component. The proteins isolated from different organs have apparent molecular weights of 26,000-30,000. Peptide mapping and partial sequencing show close homology of the hepatic junctional protein of different species. In contrast, no homologies can be detected when polypeptides from different tissues of the rat were compared by peptide mapping. Preliminary results from partial sequencing, however, show that the amino terminal regions of the liver and heart proteins are related to one another. Sequencing has not yet revealed any such homologies between the lens and the other junction proteins.  相似文献   

11.
12.
Connexin-based gap junction hemichannels: gating mechanisms   总被引:13,自引:0,他引:13  
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.  相似文献   

13.
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.  相似文献   

14.
The presence of gap junctions has been examined up to the sixth cleavage in the early Patella embryo. Gap junctions are located all over the blastomere borders. In 2-, 4-, and 8-cell embryos they were also observed at peripheral contacts. The frequency and size of the gap junctions increase at the 32-cell stage. The structure of gap junctions is similar in all stages investigated with hexagonally arranged equal-sized particles (11 nm) having a constant center-to-center spacing (13.0 nm). At the 32-cell stage formation plaques were observed, indicating an increase of gap junctions.  相似文献   

15.
《FEBS letters》2014,588(8):1221-1229
Connexin proteins are short-lived within the cell, whether present in the secretory pathway or in gap junction plaques. Their levels can be modulated by their rate of degradation. Connexins, at different stages of assembly, are degraded through the proteasomal, endo-/lysosomal, and phago-/lysosomal pathways. In this review, we summarize the current knowledge about connexin and gap junction degradation including the signals and protein–protein interactions that participate in their targeting for degradation.  相似文献   

16.
Isolated heavy sarcoplasmic reticulum vesicles retain junctional specializations (feet) on their outer surface. We have obtained en face three-dimensional views of the feet by shadowing and replicating the surfaces of freeze-dried isolated vesicles. Feet are clearly visible as large structures located on raised platforms. New details of foot structure include a four subunit structure and the fact that adjacent feet do not abut directly corner to corner but are offset by half a subunit. Feet aligned within rows were observed to be rotated at a slight angle off the long axis of the row creating a center-to-center spacing (32.5 nm) slightly less than the average diagonal of the feet (35.3 nm). Comparison with previous information from thin sections and freeze-fracture showed that this approach to the study of membranes faithfully preserves structure and allows better visualization of surface details than either thin-sectioning or negative-staining.  相似文献   

17.
18.
The gap junction connecting cardiac myocytes is voltage and time dependent. This simulation study investigated the effects of dynamic gap junctions on both the shape and conduction velocity of a propagating action potential. The dynamic gap junction model is based on that described by Vogel and Weingart (J. Physiol. (Lond.). 1998, 510:177-189) for the voltage- and time-dependent conductance changes measured in cell pairs. The model assumes that the conductive gap junction channels have four conformational states. The gap junction model was used to couple 300 cells in a linear strand with membrane dynamics of the cells defined by the Luo-Rudy I model. The results show that, when the cells are tightly coupled (6700 channels), little change occurs in the gap junction resistance during propagation. Thus, for tight coupling, there are negligible differences in the waveshape and propagation velocity when comparing the dynamic and static gap junction representations. For poor coupling (85 channels), the gap junction resistance increases 33 MOmega during propagation. This transient change in resistance resulted in increased transjunctional conduction delays, changes in action potential upstroke, and block of conduction at a lower junction resting resistance relative to a static gap junction model. The results suggest that the dynamics of the gap junction enhance cellular decoupling as a possible protective mechanism of isolating injured cells from their neighbors.  相似文献   

19.
Despite a growing interest in gap junctions (GJs) of mammalian brain, their distribution and role in cell ensembles of thalamus remains unknown. The aim of this work was ultrastructural and immunoelectron study of glial GJs in ventral posteromedial (VPM) and posteromedial (POM) thalamic nuclei and thalamic reticular nucleus (RTN) of rats. GJs were identified by standard techniques of transmission electron microscopy and by pre-embedding immunohistochemistry protocol using anti-connexin-43 antibodies with Dako EnVision System + Peroxidase (DAB) detecting system. It was found that glial cells surround thalamocortical axons and axo-spiny synapses and form numerous elongated gap junction plaques located near chemical synapses. A single axon-spiny chemical synapse can be surrounded by several (up to 4) gap junctions that seem to form peculiar networks of glial cells united by GJs. Closely adjacent gap junctions disposed at an angle from 30° to 140° to each other were revealed. Immunoelectron labeling demonstrated that gap junction plaques located around chemical synapses have an astroglial origin. Despite the accumulation of osmiophilic material in the contact zone, ultrastructural signs of GJs were clearly identified. Due to the formation of intercellular glia-glial GJs astroglia may acquire a function of spatial buffer to regulate extracellular concentration of potassium and other ions, providing intracellular and extracellular ion homeostasis. We believe that astroglial processes joined into a network by GJs play a key role in the circulation of information and can modulate subcortical neuronal ensembles. We suggest that a close spatial location of astroglial GJs and asymmetrical chemical synapses is reflected in the functional organization of specific and nonspecific thalamic nuclei, which are the main centers of the afferent and efferent inputs of the cerebral cortex.  相似文献   

20.
Freeze-fracture and thin-section studies were done on cockroach hemocytes that had encapsulated implanted pieces of Araldite. Desmosome-like junctions and 'B' type gap junction were described. Freeze-fractured gap junctions displayed fused and clustered, but not hexagonally arrayed intramembranous practicles (approximately 130 A) on the B face and pitted areas on the A face of the plasmalemma. Gap junctions were quite numerous and counts of gap and non-gap particles indicated at least a five-fold particle density increase (4000/mu2) compared with B face particle densities (approximately 800/mu2) from free circulating blood cells where gap junctions had not been formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号