首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G. Kao  J. C. Shah    M. J. Clancy 《Genetics》1990,126(4):823-835
The RES1-1 mutation was isolated on the basis of its ability to allow MATa/MAT alpha diploid Saccharomyces cerevisiae cells to express a late sporulation-regulated gene, SPR3, in the presence of excess copies of RME1. RME1 is a repressor of meiosis that is normally expressed in cells that lack the a1/alpha 2 repressor encoded by MAT. The RES1-1 mutation also supports sporulation in mat-insufficient diploids. This phenotype does not result from a failure to express RME1 and is not due to activation of the silent copies of mating type information. RES1-1 activates sporulation by allowing IME1 accumulation in all cell types, irrespective of the presence of the MAT products. IME1 is still responsive to RME1 in RES1-1 cells, since double mutants (rme1 RES1-1) that are deficient at MAT can sporulate better than either single mutant. RES1-1 is not an allele of IME1.  相似文献   

2.
3.
4.
5.
6.
K. A. Hudak  J. M. Lopes    S. A. Henry 《Genetics》1994,136(2):475-483
Three mutants were identified in a genetic screen using an INO1-lacZ fusion to detect altered INO1 regulation in Saccharomyces cerevisiae. These strains harbor mutations that render the cell unable to fully repress expression of INO1, the structural gene for inositol-1-phosphate synthase. The Cpe(-) (constitutive phospholipid gene expression) phenotype associated with these mutations segregated 2:2, indicating that it was the result of a single gene mutation. The mutations were shown to be recessive and allelic. A strain carrying the tightest of the three alleles was examined in detail and was found to express the set of co-regulated phospholipid structural genes (INO1, CHO1, CHO2 and OPI3) constitutively. The Cpe(-) mutants also exhibited a pleiotropic defect in sporulation. The mutations were mapped to the right arm of chromosome XV, close to the centromere, where it was discovered that they were allelic to the previously identified regulatory mutation sin3 (sdi1, ume4, rpd1, gam2). A sin3 null mutation failed to complement the mutation conferring the Cpe(-) phenotype. A mutant harboring a sin3 null allele exhibited the same altered INO1 expression pattern observed in strains carrying the Cpe(-) mutations isolated in this study.  相似文献   

7.
J. R. Erickson  M. Johnston 《Genetics》1994,136(4):1271-1278
We selected and analyzed extragenic suppressors of mutations in four genes-GRR1, REG1, GAL82 and GAL83-required for glucose repression of the GAL genes in the yeast Saccharomyces cerevisiae. The suppressors restore normal or nearly normal glucose repression of GAL1 expression in these glucose repression mutants. Tests of the ability of each suppressor to cross-suppress mutations in the other glucose repression genes revealed two groups of mutually cross-suppressed genes: (1) REG1, GAL82 and GAL83 and (2) GRR1. Mutations of a single gene, SRG1, were found as suppressors of reg1, GAL83-2000 and GAL82-1, suggesting that these three gene products act at a similar point in the glucose repression pathway. Mutations in SRG1 do not cross-suppress grr1 or hxk2 mutations. Conversely, suppressors of grr1 (rgt1) do not cross-suppress any other glucose repression mutation tested. These results, together with what was previously known about these genes, lead us to propose a model for glucose repression in which Grr1p acts early in the glucose repression pathway, perhaps affecting the generation of the signal for glucose repression. We suggest that Reg1p, Gal82p and Gal83p act after the step(s) executed by Grr1p, possibly transmitting the signal for repression to the Snf1p protein kinase.  相似文献   

8.
9.
J. S. Flick  M. Johnston 《Genetics》1992,130(2):295-304
Repression of GAL1 expression during growth on glucose is mediated in part by cis-acting promoter elements designated URSG. We show that oligonucleotides containing sequences from two regions of URSG confer glucose repression upon a heterologous promoter. Repression caused by URSG is dependent on trans-acting factors of the glucose repression pathway and is independent of orientation or location within a promoter, suggesting that URSG contains binding sites for a glucose-activated repressor protein(s). Genetic analysis identified three apparently novel genes (URR1, URR3 and URR4) that are specifically required for URSG-mediated repression and may encode such repressor proteins. Mutations in the URR genes suppress the defect in URSG derepression caused by a snf1 mutation.  相似文献   

10.
11.
12.
Ty1 Transposition in Saccharomyces Cerevisiae Is Nonrandom   总被引:7,自引:8,他引:7       下载免费PDF全文
A large collection of Ty1 insertions in the URA3 and LYS2 loci was generated using a GAL1-Ty1 fusion to augment the transposition frequency. The sites of insertion of most of these Ty elements were sequenced. There appears to be a gradient of frequency of insertion from the 5' end (highest frequency) to the 3' end (lowest frequency) of both loci. In addition we observed hotspots for transposition. Twelve of the 82 Ty1 insertions in the URA3 locus were inserted in exactly the same site. Hotspots were also observed in the LYS2 locus. All hotspots were in the transcribed part of the genes. Alignment of the sites of insertion and of the neighboring sequences only reveals very weak sequence similarities.  相似文献   

13.
M. Dorsey  C. Peterson  K. Bray    C. E. Paquin 《Genetics》1992,132(4):943-950
Five spontaneous amplifications of the ADH4 gene were identified among 1,894 antimycin A-resistant mutants isolated from a diploid strain after growth at 15 degrees. Four of these amplifications are approximately 40-kb linear extrachromosomal palindromes carrying telomere homologous sequences at each end similar to a previously isolated amplification. ADH4 is located at the extreme left end of chromosome VII, and the extrachromosomal fragments appear to be the fusion of two copies of the end of this chromosome. The fifth amplification is a chromosomal amplification carrying an extra copy of ADH4 on both homologs of chromosome VII. These results suggest that the ADH system can be used to study amplification in Saccharomyces cerevisiae.  相似文献   

14.
C. Velot  P. Haviernik    GJM. Lauquin 《Genetics》1996,144(3):893-903
The ACO1 gene, encoding mitochondrial aconitase of Saccharomyces cerevisiae, is required both for oxidative metabolism and for glutamate prototrophy. This gene is subject to catabolite repression; the ACO1 mRNA level is further reduced when glutamate is supplied with glucose. To further explore regulation of ACO1 expression, we have screened for mutations that reduce expression of an ACO1-lacZ fusion borne on a multicopy vector. We identified a gene required for wild-type expression of ACO1 only under catabolite repression conditions. Sequencing of the corresponding cloned gene revealed that it is identical to RTG2 previously cloned as a pivotal gene in controlling interorganelle retrograde communication. Cells containing either the original rtg2-2 mutation or a null rtg2 allele are not petite but show a residual growth on minimum glucose medium with ammonium sulfate as the sole nitrogen source. This growth defect is partially restored by supplying aspartate or threonine, and fully with glutamate or proline supplement. Surprisingly, this phenotype is not observed on complete medium lacking either of these amino acids. In addition, a genetic analysis revealed an interaction between RTG2 and ASP5 (encoding aspartate amino transferase), thus supporting our hypothesis that RTG2 may be involved in the control of several anaplerotic pathways.  相似文献   

15.
Mutations that cause loss of acidity in the vacuole (lysosome) of Saccharomyces cerevisiae were identified by screening colonies labeled with the fluorescent, pH-sensitive, vacuolar labeling agent, 6-carboxyfluorescein. Thirty nine vacuolar pH (Vph-) mutants were identified. Four of these contained mutant alleles of the previously described PEP3, PEP5, PEP6 and PEP7 genes. The remaining mutants defined eight complementation groups of vph mutations. No alleles of the VAT2 or TFP1 genes (known to encode subunits of the vacuolar H(+)-ATPase) were identified in the Vph- screen. Strains bearing mutations in any of six of the VPH genes failed to grow on medium buffered at neutral pH; otherwise, none of the vph mutations caused notable growth inhibition on standard yeast media. Expression of the vacuolar protease, carboxypeptidase Y, was defective in strains bearing vph4 mutations but was apparently normal in strains bearing any of the other vph mutations. Defects in vacuolar morphology at the light microscope level were evident in all Vph- mutants. Strains that contained representative mutant alleles of the 17 previously described PEP genes were assayed for vacuolar pH; mutations in seven of the PEP genes (including PEP3, PEP5, PEP6 and PEP7) caused loss of vacuolar acidity.  相似文献   

16.
The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway.  相似文献   

17.
M. Saparbaev  L. Prakash    S. Prakash 《Genetics》1996,142(3):727-736
The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3Δ mutation has an effect on recombination similar to that of the rad1Δ and rad10Δ mutations. The msh2Δ mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integration of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAD1-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process.  相似文献   

18.
R. Schnell  L. D''Ari  M. Foss  D. Goodman    J. Rine 《Genetics》1989,122(1):29-46
In order to learn more about other proteins that may be involved in repression of HML and HMR in Saccharomyces cerevisiae, extragenic suppressor mutations were identified that could restore repression in cells defective in SIR4, a gene required for function of the silencer elements flanking HML and HMR. These suppressor mutations, which define at least three new genes, SAN1, SAN2 and SAN3, arose at the frequency expected for loss-of-function mutations following mutagenesis. All san mutations were recessive. Suppression by san1 was allele-nonspecific, since san1 could suppress two very different alleles of SIR4, and was locus-specific since san1 was unable to suppress a SIR3 mutation or a variety of mutations conferring auxotrophies. The SAN1 gene was cloned, sequenced, and used to construct a null allele. The null allele had the same phenotype as the EMS-induced mutations and exhibited no pleiotropies of its own. Thus, the SAN1 gene was not essential. SAN1-mediated suppression was neither due to compensatory mutations in interacting proteins, nor to translational missense suppression. SAN1 may act posttranslationally to control the stability or activity of the SIR4 protein.  相似文献   

19.
CP1 (encoded by the CEP1 gene) is a centromere binding protein of Saccharomyces cerevisiae that binds to the conserved DNA element I (CDEI) of yeast centromeres. To investigate the function of CP1 in yeast meiosis, we analyzed the meiotic segregation of CEN plasmids, nonessential chromosome fragments (CFs) and chromosomes in cep1 null mutants. Plasmids and CFs missegregated in 10-20% of meioses with the most frequent type of aberrant event being precocious sister segregation at the first meiotic division; paired and unpaired CFs behaved similarly. An unpaired chromosome I homolog (2N + 1) also missegregated at high frequency in the cep1 mutant (7.6%); however, missegregation of other chromosomes was not detected by tetrad analysis. Spore viability of cep1 tetrads was significantly reduced, and the pattern of spore death was nonrandom. The inviability could not be explained solely by chromosome missegregation and is probably a pleiotropic effect of cep1. Mitotic chromosome loss in cep1 strains was also analyzed. Both simple loss (1:0 segregation) and nondisjunction (2:0 segregation) were increased, but the majority of loss events resulted from nondisjunction. We interpret the results to suggest that CP1 generally promotes chromatid-kinetochore adhesion.  相似文献   

20.
The Saccharomyces cerevisiae GPA1 gene encodes a protein highly homologous to the α subunit of mammalian G proteins and is essential for haploid cell growth. We have selected 77 mutants able to suppress the lethality resulting from disruption of GPA1 (gpa1::HIS3). Two strains bearing either of two recessive mutations, sgp1 and sgp2, in combination with the disruption mutation, showed a cell type nonspecific sterile phenotype, yet expressed the major α-factor gene (MFα1) as judged by the ability to express a MFα1-lacZ fusion gene. The sgp1 mutation was closely linked to gpa1::HIS3 and probably occurred at the GPA1 locus. The sgp2 mutation was not linked to GPA1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11 and ste12). sgp2 GPA1 cells showed a fertile phenotype, indicating that the mating defect caused by sgp2 is associated with the loss of GPA1 function. While expression of a FUS1-lacZ fusion gene was induced in wild-type cells by the addition of α-factor, mutants bearing sgp1 or sgp2 as well as gpa1::HIS3 constitutively expressed FUS1-lacZ. These observations suggest that GPA1 (SGP1) and SGP2 are involved in mating factor-mediated signal transduction, which causes both cell cycle arrest in the late G(1) phase and induction of genes necessary for mating such as FUS1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号