首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The GJB2 gene is located on chromosome 13q12 and it encodes the connexin 26, a transmembrane protein involved in cell-cell attachment of almost all tissues. GJB2 mutations cause autosomal recessive (DFNB1) and sometimes dominant (DFNA3) non-syndromic sensorineural hearing loss. Moreover, it has been demonstrated that connexins are involved in regulation of growth and differentiation of epidermis and, in fact, GJB2 mutations have also been identified in syndromic disorders with hearing loss associated with various skin disease phenotypes. GJB2 mutations associated with skin disease are, in general, transmitted with a dominant inheritance pattern. Nonsyndromic deafness is caused prevalently by a loss-of-function, while literature evidences suggest for syndromic deafness a mechanism based on gain-of-function. The spectrum of skin manifestations associated with some mutations seems to have a very high phenotypic variability. Why some mutations can lead to widely varying cutaneous manifestations is poorly understood and in particular, the reason why the skin disease-deafness phenotypes differ from each other thus remains unclear. This review provides an overview of recent findings concerning pathogenesis of syndromic deafness imputable to GJB2 mutations with an emphasis on relevant clinical genotype-phenotype correlations. After describing connexin 26 fundamental characteristics, the most relevant and recent information about its known mutations involved in the syndromic forms causing hearing loss and skin problems are summarized. The possible effects of the mutations on channel expression and function are discussed.  相似文献   

2.
3.
4.
Wolfram syndrome is an autosomal recessive neurodegenerative disorder characterized by juvenile-onset diabetes mellitus and progressive optic atrophy. mtDNA deletions have been described, and a gene (WFS1) recently has been identified, on chromosome 4p16, encoding a predicted 890 amino acid transmembrane protein. Direct DNA sequencing was done to screen the entire coding region of the WFS1 gene in 30 patients from 19 British kindreds with Wolfram syndrome. DNA was also screened for structural rearrangements (deletions and duplications) and point mutations in mtDNA. No pathogenic mtDNA mutations were found in our cohort. We identified 24 mutations in the WFS1 gene: 8 nonsense mutations, 8 missense mutations, 3 in-frame deletions, 1 in-frame insertion, and 4 frameshift mutations. Of these, 23 were novel mutations, and most occurred in exon 8. The majority of patients were compound heterozygotes for two mutations, and there was no common founder mutation. The data were also analyzed for genotype-phenotype relationships. Although some interesting cases were noted, consideration of the small sample size and frequency of each mutation indicated no clear-cut correlations between any of the observed mutations and disease severity. There were no obvious mutation hot spots or clusters. Hence, molecular screening for Wolfram syndrome in affected families and for Wolfram syndrome-carrier status in subjects with psychiatric disorders or diabetes mellitus will require complete analysis of exon 8 and upstream exons.  相似文献   

5.
Microphthalmia is an important developmental eye disorder. Although mutations in several genes have been linked to this condition, they only account for a minority of cases. We performed autozygome analysis and exome sequencing on a multiplex consanguineous family in which colobomatous microphthalmia is associated with profound global developmental delay, intractable seizures, and corpus callosum abnormalities, and we identified a homozygous truncating mutation in C12orf57 [c.1A>G; p.Met1?]. In a simplex case with a similar phenotype, we identified compound heterozygosity for the same mutation and another missense mutation [c.152T>A; p.Leu51Gln]. Little is known about C12orf57 but we show that it is expressed in several mouse tissues, including the eye and brain. Our data strongly implicate mutations in C12orf57 in the pathogenesis of a clinically distinct autosomal-recessive syndromic form of colobomatous microphthalmia.  相似文献   

6.
Cone photoreceptor disorders form a clinical spectrum of diseases that include progressive cone dystrophy (CD) and complete and incomplete achromatopsia (ACHM). The underlying disease mechanisms of autosomal recessive (ar)CD are largely unknown. Our aim was to identify causative genes for these disorders by genome-wide homozygosity mapping. We investigated 75 ACHM, 97 arCD, and 20 early-onset arCD probands and excluded the involvement of known genes for ACHM and arCD. Subsequently, we performed high-resolution SNP analysis and identified large homozygous regions spanning the PDE6C gene in one sibling pair with early-onset arCD and one sibling pair with incomplete ACHM. The PDE6C gene encodes the cone α subunit of cyclic guanosine monophosphate (cGMP) phosphodiesterase, which converts cGMP to 5′-GMP, and thereby plays an essential role in cone phototransduction. Sequence analysis of the coding region of PDE6C revealed homozygous missense mutations (p.R29W, p.Y323N) in both sibling pairs. Sequence analysis of 104 probands with arCD and 10 probands with ACHM revealed compound heterozygous PDE6C mutations in three complete ACHM patients from two families. One patient had a frameshift mutation and a splice defect; the other two had a splice defect and a missense variant (p.M455V). Cross-sectional retinal imaging via optical coherence tomography revealed a more pronounced absence of cone photoreceptors in patients with ACHM compared to patients with early-onset arCD. Our findings identify PDE6C as a gene for cone photoreceptor disorders and show that arCD and ACHM constitute genetically and clinically overlapping phenotypes.  相似文献   

7.
Metagenomic analyses have advanced our understanding of ecological microbial diversity, but to what extent can metagenomic data be used to predict the metabolic capacity of difficult-to-study organisms and their abiotic environmental interactions? We tackle this question, using a comparative genomic approach, by considering the molecular basis of aerobiosis within archaea. Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multienzyme complexes (OADHCs), is essential for metabolism in aerobic bacteria and eukarya. Lipoylation is catalysed either by lipoate protein ligase (LplA), which in archaea is typically encoded by two genes (LplA-N and LplA-C), or by a lipoyl(octanoyl) transferase (LipB or LipM) plus a lipoic acid synthetase (LipA). Does the genomic presence of lipoylation and OADHC genes across archaea from diverse habitats correlate with aerobiosis? First, analyses of 11,826 biotin protein ligase (BPL)-LplA-LipB transferase family members and 147 archaeal genomes identified 85 species with lipoylation capabilities and provided support for multiple ancestral acquisitions of lipoylation pathways during archaeal evolution. Second, with the exception of the Sulfolobales order, the majority of species possessing lipoylation systems exclusively retain LplA, or either LipB or LipM, consistent with archaeal genome streamlining. Third, obligate anaerobic archaea display widespread loss of lipoylation and OADHC genes. Conversely, a high level of correspondence is observed between aerobiosis and the presence of LplA/LipB/LipM, LipA and OADHC E2, consistent with the role of lipoylation in aerobic metabolism. This correspondence between OADHC lipoylation capacity and aerobiosis indicates that genomic pathway profiling in archaea is informative and that well characterized pathways may be predictive in relation to abiotic conditions in difficult-to-study extremophiles. Given the highly variable retention of gene repertoires across the archaea, the extension of comparative genomic pathway profiling to broader metabolic and homeostasis networks should be useful in revealing characteristics from metagenomic datasets related to adaptations to diverse environments.  相似文献   

8.
9.
Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous retinal disorder characterized by abnormal vascularisation of the peripheral retina, often accompanied by retinal detachment. To date, mutations in three genes (FZD4, LRP5, and NDP) have been shown to be causative for FEVR. In two large Dutch pedigrees segregating autosomal-dominant FEVR, genome-wide SNP analysis identified an FEVR locus of ∼40 Mb on chromosome 7. Microsatellite marker analysis suggested similar at risk haplotypes in patients of both families. To identify the causative gene, we applied next-generation sequencing in the proband of one of the families, by analyzing all exons and intron-exon boundaries of 338 genes, in addition to microRNAs, noncoding RNAs, and other highly conserved genomic regions in the 40 Mb linkage interval. After detailed bioinformatic analysis of the sequence data, prioritization of all detected sequence variants led to three candidates to be considered as the causative genetic defect in this family. One of these variants was an alanine-to-proline substitution in the transmembrane 4 superfamily member 12 protein, encoded by TSPAN12. This protein has very recently been implicated in regulating the development of retinal vasculature, together with the proteins encoded by FZD4, LRP5, and NDP. Sequence analysis of TSPAN12 revealed two mutations segregating in five of 11 FEVR families, indicating that mutations in TSPAN12 are a relatively frequent cause of FEVR. Furthermore, we demonstrate the power of targeted next-generation sequencing technology to identify disease genes in linkage intervals.  相似文献   

10.
Oculocutaneous albinism type 2 (OCA2), caused by mutations of OCA2 gene, is an autosomal recessive disorder characterized by reduced biosynthesis of melanin pigment in the skin, hair, and eyes. The OCA2 gene encodes instructions for making a protein called the P protein. This protein plays a crucial role in melanosome biogenesis, and controls the eumelanin content in melanocytes in part via the processing and trafficking of tyrosinase which is the rate-limiting enzyme in melanin synthesis. In this study we analyzed the pathogenic effect of 95 non-synonymous single nucleotide polymorphisms reported in OCA2 gene using computational methods. We found R305W mutation as most deleterious and disease associated using SIFT, PolyPhen, PANTHER, PhD-SNP, Pmut, and MutPred tools. To understand the atomic arrangement in 3D space, the native and mutant (R305W) structures were modeled. Molecular dynamics simulation was conducted to observe the structural significance of computationally prioritized disease-associated mutation (R305W). Root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent accessibility surface area, hydrogen bond (NH bond), trace of covariance matrix, eigenvector projection analysis, and density analysis results showed prominent loss of stability and rise in mutant flexibility values in 3D space. This study presents a well designed computational methodology to examine the albinism-associated SNPs.  相似文献   

11.
Russian Journal of Genetics - Wilson’s disease (WD) is an autosomal recessive disease caused by an excessive accumulation of copper. The molecular genetic etiology of the disease is due to...  相似文献   

12.
The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1+/− mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.  相似文献   

13.
The aim of this study was to assess the presence of DYT6 mutations in Polish patients with isolated dystonia and to characterize their phenotype. We sequenced THAP1 exons 1, 2 and 3 including exon-intron boundaries and 5’UTR fragment in 96 non-DYT1 dystonia patients. In four individuals single nucleotide variations were identified. The coding substitutions were: c. 238A>G (p.Ile80Val), found in two patients, and c.167A>G (p.Glu56Gly), found in one patient. The same variations were present also in the patients’ symptomatic as well as asymptomatic relatives. Mutation penetration in the analyzed families was 50-66.7%. In the fourth patient, a novel c.-249C>A substitution in the promoter region was identified. The patient, initially suspected of idiopathic isolated dystonia, finally presented with pantothenate kinase 2-associated neurodegeneration phenotype and was a carrier of two PANK2 mutations. This is the first identified NBIA1 case carrying mutations in both PANK2 and THAP1 genes. In all symptomatic THAP1 mutation carriers (four probands and their three affected relatives) the first signs of dystonia occurred before the age of 23. A primary localization typical for DYT6 dystonia was observed in six individuals. Five subjects developed the first signs of dystonia in the upper limb. In one patient the disease began from laryngeal involvement. An uncommon primary involvement of lower limb was noted in the THAP1 and PANK2 mutations carrier. Neither of these THAP1 substitutions were found in 150 unrelated healthy controls. To the contrary, we identified a heterozygous C/T genotype of c.57C>T single nucleotide variation (p.Pro19Pro, rs146087734) in one healthy control, but in none of the patients. Therefore, a previously proposed association between this substitution and DYT6 dystonia seems unlikely. We found also no significant difference between cases and controls in genotypes distribution of the two-nucleotide -237-236 GA>TT (rs370983900 & rs1844977763) polymorphism.  相似文献   

14.
The genome of an Escherichia coli MC4100 strain with a λ placMu50 fusion revealed numerous regulatory differences from MG1655, including one that arose during laboratory storage. The 194 mutational differences between MC4100(MuLac) and other K-12 sequences were mostly allocated to specific lineages, indicating the considerable mutational divergence between K-12 strains.Strains of Escherichia coli K-12 commonly used in various laboratories were derived from a common ancestor, but different lineages have been exposed to various forms of mutagenesis, as well as recombinational crosses involving conjugation and transduction (1). Some K-12 strains were also recipients in crosses involving E. coli B donors, as happened with the common araD139 mutation from an E. coli B/r strain (7). Laboratories in earlier eras also used different culture and storage conditions, also potentially impacting genomic integrity, especially in the movement of insertion sequences and in polymorphisms arising during storage (20, 22). Here, we used genomics to analyze the chromosomal characteristics of a commonly used K-12 lineage with a history different from that of reference K-12 strains MG1655 and W3110 (13) and pieced together its derivation by using the origins of single-nucleotide polymorphisms (SNPs) and indels as markers.Strain MC4100 [genotype according to the E. coli Genetic Stock Center: F (araD139) Δ(argF-lac)169 λ e14 flhD5301 Δ(fruK-yeiR)725(fruA25) relA1 rpsL150(Strr) rbsR22 Δ(fimB-fimE)632(::IS1) deoC1] was obtained in a series of strain constructions (4) from an HfrC-derived MO strain of S. Brenner (genotype according to the E. coli Genetic Stock Center: F λ e14 relA1 rspL150 spoT1) (J. Beckwith, personal communication; 1, 6). Strain MC4100 has been widely adopted following studies involving lacZ reporter gene fusions in the Beckwith laboratory (4, 30, 31). MC4100 is an E. coli K-12 strain frequently used in fundamental studies of gene regulation and protein export (30) and bacterial growth and physiology, including cell division (33), DNA replication (16), metabolism (26), and stationary-phase regulation (18). MC4100 is also being used in systems biology approaches to defining E. coli (15) and as a starting strain in laboratory evolution experiments (21).The genome of strain MC4100 has been previously compared to that of reference strain MG1655 by restriction mapping (14) and using microarrays based on the MG1655 sequence (25). There are substantial band differences between MG1655 and MC4100 as determined by pulsed-field electrophoresis (14), and several deletions have been defined by microarray analysis, followed by PCR analysis of the flanking regions (25). The microarrays did not reveal differences other than deletions, but there remain differences between MC4100 and MG1655 that are unexplained by the known genotypes. Differences in the positions of insertion sequences in MG1655 and MC4100 influence anaerobic gene regulation (29), and another far-reaching difference is the level of sigma factor σS in the two widely used strains (17). There also appear to be differences in central metabolism between the K-12 strains (26), and a recent unexpected finding was the presence of a spoT1 mutation in MC4100 not previously defined in its widely cited genotype (32). Clearly, a full genome sequence of MC4100 would greatly benefit the interpretation of a wide range of fundamental studies.The strain of MC4100 sequenced here contains an additional element, a λ placMu50 operon fusion (3) in the malEFG operon (24). According to citations, this transposable reporter construct has been used in more than 100 studies of gene regulation but has not been fully sequenced. λ placMu50 was introduced into MC4100 to generate MC4100(MuLac) strain BW2952, the ancestor strain in experimental evolution experiments, because mal expression is a useful marker for detecting an assortment of regulatory mutations in evolving cultures (9, 23).  相似文献   

15.
16.
Lan is a high-incidence blood group antigen expressed in more than 99.9% of the population. Identification of the human ABC transporter ABCB6 as the molecular basis of Lan has opened the way for studies assessing the relation of ABCB6 function and expression to health and disease. To date, 34 ABCB6 sequence variants have been described in association with reduced ABCB6 expression based on the genotyping of stored blood showing weak or no reactivity with anti-Lan antibodies. In the present study we examined the red blood cell (RBC) surface expression of ABCB6 by quantitative flow cytometry in a cohort of 47 healthy individuals. Sequencing of the entire coding region of the ABCB6 gene in low RBC ABCB6 expressors identified a new allele (IVS9+1G>A, affecting a putative splice site at the boundary of exon 9) and two nonsynonymous SNPs listed in the SNP database (R192Q (rs150221689) and G588 S (rs145526996)). The R192Q mutation showed co-segregation with reduced RBC ABCB6 expression in a family, and we found the G588 S mutation in a compound heterozygous individual with undetectable ABCB6 expression, suggesting that both mutations result in weak or no expression of ABCB6 on RBCs. Analysis of the intracellular expression pattern in HeLa cells by confocal microscopy indicated that these mutations do not compromise overall expression or the endolysosomal localization of ABCB6. Genotyping of two large cohorts, containing 235 and 1039 unrelated volunteers, confirmed the high allele frequency of Lan-mutations. Our results suggest that genetic variants linked to lower or absent cell surface expression of ABCB6/Langereis may be more common than previously thought.  相似文献   

17.
A fosmid library with inserts containing approximately 40 kb of marine bacterial DNA (J. L. Stein, T. L. Marsh, K. Y. Wu, H. Shizuya, and E. F. DeLong, J. Bacteriol. 178:591–599, 1996) yielded four clones with 16S rRNA genes from the order Planctomycetales. Three of the clones belong to the Pirellula group and one clone belongs to the Planctomyces group, based on phylogenetic and signature nucleotide analyses of full-length 16S rRNA genes. Sequence analysis of the ends of the genes revealed a consistent mismatch in a widely used bacterium-specific 16S rRNA PCR amplification priming site (27F), which has also been reported in some thermophiles and spirochetes.  相似文献   

18.

Objective

DNA aberrations that cause colorectal cancer (CRC) occur in multiple steps that involve microsatellite instability (MSI) and chromosomal instability (CIN). Herein, we studied CRCs from AA patients for their CIN and MSI status.

Experimental Design

Array CGH was performed on 30 AA colon tumors. The MSI status was established. The CGH data from AA were compared to published lists of 41 TSG and oncogenes in Caucasians and 68 cancer genes, proposed via systematic sequencing for somatic mutations in colon and breast tumors. The patient-by-patient CGH profiles were organized into a maximum parsimony cladogram to give insights into the tumors'' aberrations lineage.

Results

The CGH analysis revealed that CIN was independent of age, gender, stage or location. However, both the number and nature of aberrations seem to depend on the MSI status. MSI-H tumors clustered together in the cladogram. The chromosomes with the highest rates of CGH aberrations were 3, 5, 7, 8, 20 and X. Chromosome X was primarily amplified in male patients. A comparison with Caucasians revealed an overall similar aberration profile with few exceptions for the following genes; THRB, RAF1, LPL, DCC, XIST, PCNT, STS and genes on the 20q12-q13 cytoband. Among the 68 CAN genes, all showed some level of alteration in our cohort.

Conclusion

Chromosome X amplification in male patients with CRC merits follow-up. The observed CIN may play a distinctive role in CRC in AAs. The clustering of MSI-H tumors in global CGH data analysis suggests that chromosomal aberrations are not random.  相似文献   

19.
20.
Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号