首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of molybdenum cofactor from Escherichia coli.   总被引:4,自引:6,他引:4       下载免费PDF全文
Molybdenum cofactor activity was found in the soluble fraction of cell-free extracts of Escherichia coli grown aerobically in media supplemented with molybdate. Cofactor was detected by its ability to complement the nitrate reductase-deficient mutant of Neurospora crossa, nit-1, resulting in the vitro formation of nitrate reductase activity. Acid treatment of E. coli extracts was not required for release of cofactor activity. Cofactor was able to diffuse through a membrane of nominal 2,000-molecular-weight cutoff and was insensitive to trypsin. The cofactor was associated with a carrier molecule (approximately 40,000 daltons) during gel filtration and sucrose gradient centrifugation, but was easily removed from the carrier by dialysis. The carrier molecule protected the cofactor from inactivation by heat or oxygen. E. coli grown in molybdenum-free media, without and with tungsten, synthesized a metal-free "empty" cofactor and its tungsten analog, respectively, both of which were subsequently activated by the addition of molybdate. Empty and tungsten-containing cofactor complemented the nitrate reductase subunits in the nit-1 extract, forming inactive, but intact, 7.9S nitrate reductase. Addition of molybdate to the enzyme complemented in this manner restored nitrate reductase activity.  相似文献   

2.
Biosynthesis of the molybdenum cofactor, a chelate of molybdenum or tungsten with a novel pterin, occurs in virtually all organisms including humans. In the cofactor, the metal is complexed to the unique cis-dithiolene moiety located on the pyran ring of molybdopterin. Escherichia coli molybdopterin synthase, the protein responsible for adding the dithiolene to a desulfo precursor termed precursor Z, is a dimer of dimers containing the MoaD and MoaE proteins. The sulfur used for dithiolene formation is carried in the form of a thiocarboxylate at the MoaD C terminus. Using an intein expression system for preparation of thiocarboxylated MoaD, the mechanism of the molybdopterin synthase reaction was examined. A stoichiometry of 2 molecules of thiocarboxylated MoaD per conversion of a single precursor Z molecule to molybdopterin was observed. Examination of several synthase variants bearing mutations in the MoaE subunit identified Lys-119 as a residue essential for activity and Arg-39 and Lys-126 as other residues critical for the reaction. An intermediate of the synthase reaction was identified and characterized. This intermediate remains tightly associated with the protein and is the predominant product formed by synthase containing the K126A variant of MoaE. Mass spectral data obtained from protein-bound intermediate are consistent with a monosulfurated structure that contains a terminal phosphate group similar to that present in molybdopterin.  相似文献   

3.
Five moeA mutants were generated by replacing some conserved amino acids of MoeA by site-directed mutagenesis. The mutants were assayed for the ability to restore in vivo nitrate reductase activity of the moeA mutant Escherichia coli JRG97 and in vitro Neurospora crassa nit-1 nitrate reductase activity. The replacements Asp59AlaGly60Ala, Asp259Ala, Pro298AlaPro301Ala abolished the function of MoeA in Mo-molybdopterin formation and stabilization, reflected in the inability to restore nitrate reductase activity. The replacements Gly251AlaGly252Ala reduced, and that of Pro283Ala had no effect, on nitrate reductase activity. E. coli JRG97 cells transformed with mutants that failed to restore nitrate reductase activity showed by HPLC analysis a decreased level of molybdopterin-derived dephospho FormA as compared to bacteria transformed with wild-type moeA. The effects of the amino acid replacements on MoeA function may be explained in correlation with the MoeA crystal structure.  相似文献   

4.
The chlorate-resistant mutants of Escherichia coli are affected in the biosynthesis of the molybdenum cofactor and show pleiotropic loss of the activities of those enzymes which require the cofactor. The molybdenum cofactor in all molybdoenzymes other than nitrogenase is a complex of the metal with a unique pterin termed molybdopterin. The molybdenum cofactor in a number of E. coli enzymes has been shown to contain GMP in addition to the metal-molybdopterin complex, with the GMP appended in pyrophosphate linkage to the terminal phosphate ester on the molybdopterin side chain. In this paper, we have examined the biochemistry of the chlB mutant and show that the gene product of the chlB locus is essential for the addition of the GMP moiety to form molybdopterin guanine dinucleotide, a step which occurs late in the cofactor biosynthetic pathway in E. coli. Sensitive techniques were developed for the identification of fluorescent derivatives of molybdopterin and of molybdopterin guanine dinucleotide in extracts of E. coli cells. Wild type cells were shown to contain both molybdopterin and molybdopterin guanine dinucleotide, while cells of chlB mutants were found to contain elevated levels of molybdopterin but no detectable molybdopterin guanine dinucleotide.  相似文献   

5.
The cofactor content of in vivo, as-isolated, and reconstituted forms of recombinant Escherichia coli biotin synthase (BioB) has been investigated using the combination of UV-visible absorption, resonance Raman, and M?ssbauer spectroscopies along with parallel analytical and activity assays. In contrast to the recent report that E. coli BioB is a pyridoxal phosphate (PLP)-dependent enzyme with intrinsic cysteine desulfurase activity (Ollagnier-deChoudens, S., Mulliez, E., Hewitson, K. S., and Fontecave, M. (2002) Biochemistry 41, 9145-9152), no evidence for PLP binding or for PLP-induced cysteine desulfurase or biotin synthase activity was observed with any of the forms of BioB investigated in this work. The results confirm that BioB contains two distinct Fe-S cluster binding sites. One site accommodates a [2Fe-2S](2+) cluster with partial noncysteinyl ligation that can only be reconstituted in vitro in the presence of O(2). The other site accommodates a [4Fe-4S](2+,+) cluster that binds S-adenosylmethionine (SAM) at a unique Fe site of the [4Fe-4S](2+) cluster and undergoes O(2)-induced degradation via a distinct type of [2Fe-2S](2+) cluster intermediate. In vivo M?ssbauer studies show that recombinant BioB in anaerobically grown cells is expressed exclusively in an inactive form containing only the as-isolated [2Fe-2S](2+) cluster and demonstrate that the [2Fe-2S](2+) cluster is not a consequence of overexpressing the recombinant enzyme under aerobic growth conditions. Overall the results clarify the confusion in the literature concerning the Fe-S cluster composition and the in vitro reconstitution and O(2)-induced cluster transformations that are possible for recombinant BioB. In addition, they provide a firm foundation for assessing cluster transformations that occur during turnover and the catalytic competence of the [2Fe-2S](2+) cluster as the immediate S-donor for biotin biosynthesis.  相似文献   

6.
Escherichia coli MoeA and MogA are required for molybdenum cofactor biosynthesis and are believed to function in the addition of molybdenum to the dithiolene of molybdopterin to form molybdenum cofactor. Here we show that moeA(-) and mogA(-) cells are able to synthesize molybdopterin, but both are deficient in molybdenum incorporation and, as a consequence, are deficient in the formation of molybdopterin-guanine dinucleotide. Human sulfite oxidase expressed in E. coli moeA(-) could be activated in vitro in the presence of MoeA and low concentrations of molybdate. Sulfite oxidase purified from the moeA(-) lysate was also activated, although to a lesser extent than observed in the presence of lysate. MogA was incapable of activating sulfite oxidase expressed in E. coli mogA(-). These results demonstrate that molybdenum insertion into molybdopterin is required for molybdopterin-guanine dinucleotide formation, and that MoeA facilitates molybdenum incorporation at low levels of molybdate, but MogA has an alternative function, possibly as a carrier for molybdopterin during molybdenum incorporation.  相似文献   

7.
Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway in archaea, eubacteria, and eukaryotes, including humans. Genetic deficiencies of enzymes involved in this biosynthetic pathway trigger an autosomal recessive disease with severe neurological symptoms, which usually leads to death in early childhood. The MogA protein exhibits affinity for molybdopterin, the organic component of Moco, and has been proposed to act as a molybdochelatase incorporating molybdenum into Moco. MogA is related to the protein gephyrin, which, in addition to its role in Moco biosynthesis, is also responsible for anchoring glycinergic receptors to the cytoskeleton at inhibitory synapses. The high resolution crystal structure of the Escherichia coli MogA protein has been determined, and it reveals a trimeric arrangement in which each monomer contains a central, mostly parallel beta-sheet surrounded by alpha-helices on either side. Based on structural and biochemical data, a putative active site was identified, including two residues that are essential for the catalytic mechanism.  相似文献   

8.
We have isolated and characterized the Chlamydomonas reinhardtii genes for molybdenum cofactor biosynthesis, namely, CNX1G and CNX1E, and expressed them and their chimeric fusions in Chlamydomonas and Escherichia coli. In all cases, the wild-type phenotype was restored in individual mutants as well as in a CNX1G CNX1E double mutant. Therefore, CrCNX1E is the first eukaryotic protein able to complement an E. coli moeA mutant.  相似文献   

9.
In the second step of the molybdenum cofactor (Moco) biosynthesis in Escherichia coli, the l-cysteine desulfurase IscS was identified as the primary sulfur donor for the formation of the thiocarboxylate on the small subunit (MoaD) of MPT synthase, which catalyzes the conversion of cyclic pyranopterin monophosphate to molybdopterin (MPT). Although in Moco biosynthesis in humans, the thiocarboxylation of the corresponding MoaD homolog involves two sulfurtransferases, an l-cysteine desulfurase, and a rhodanese-like protein, the rhodanese-like protein in E. coli remained enigmatic so far. Using a reverse approach, we identified a so far unknown sulfurtransferase for the MoeB-MoaD complex by protein-protein interactions. We show that YnjE, a three-domain rhodanese-like protein from E. coli, interacts with MoeB possibly for sulfur transfer to MoaD. The E. coli IscS protein was shown to specifically interact with YnjE for the formation of the persulfide group on YnjE. In a defined in vitro system consisting of MPT synthase, MoeB, Mg-ATP, IscS, and l-cysteine, YnjE was shown to enhance the rate of the conversion of added cyclic pyranopterin monophosphate to MPT. However, YnjE was not an enhancer of the cysteine desulfurase activity of IscS. This is the first report identifying the rhodanese-like protein YnjE as being involved in Moco biosynthesis in E. coli. We believe that the role of YnjE is to make the sulfur transfer from IscS for Moco biosynthesis more specific because IscS is involved in a variety of different sulfur transfer reactions in the cell.  相似文献   

10.
11.
12.
The chlA locus encodes functions required for the biosynthesis of the molybdopterin part of the molybdenum cofactor. Mutants, carrying gene fusions at the chlA locus, which place beta-galactosidase expression under the control of the chlA promoter, have been isolated employing lambda placMu1 as the mutagen. The mutants exhibited beta-galactosidase expression which was greatly enhanced when grown anaerobically. Secondary mutations at the chlB, D, E or G loci did not affect the high level of expression. The fnr gene product was not required for the anaerobic expression. Bacteriophage lambda transducing phages were isolated which carried the phi(chlA-lac) mutations and were used to construct chlA+/phi(clA-lac) merodiploids. The merodiploids exhibited a much lower level of expression but showed the same characteristics as strains carrying lac fusions to the single chromosomal chlA locus. Genetic evidence is presented which strongly suggests that the molybdenum cofactor is a repressor of chlA expression. The anaerobic enhancement of chlA expression is mediated via a mechanism that is distinct from the molybdenum cofactor effect.  相似文献   

13.
The molybdopterin (MPT) synthase complex in Escherichia coli consists of two MoaE subunits and two MoaD subunits in a heterotetrameric structure with the two MoaE subunits forming a central dimer. Each MoaD subunit binds to a single MoaE molecule to form two identical MoaE/MoaD interfaces. Here we define the thermodynamic properties of the interaction between MoaE and MoaD in MPT synthase using a H/D exchange and matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy based method termed SUPREX (stability of unpurified proteins from rates of H/D exchange). SUPREX-derived protein folding free energies and m values are reported for MoaE in the presence and absence of MoaD and MoaD-SH, the thiocarboxylated form of MoaD that is essential for the catalytic activity of MPT synthase. The protein folding free energy measurements were used to calculate a dissociation constant of 17 +/- 7 microM for the binding of MoaD to MoaE in inactive MPT synthase and a dissociation constant of 2.6 +/- 0.9 microM for the binding of MoaD-SH to MoaE in active MPT synthase. The increased binding affinity of MoaD-SH for MoaE is consistent with a previously proposed mechanism for the MPT synthase reaction. Using the increased m values exhibited by MoaE in the presence of either MoaD subunit, the solvent accessible surface area buried upon formation of the subunit interface in MPT synthase was estimated to be 2378 A(2) for inactive MPT synthase and 4117 A(2) for active MPT synthase.  相似文献   

14.
Experiments were performed to determine whether defects in molybdenum cofactor metabolism were responsible for the pleiotropic loss of the molybdoenzymes nitrate reductase and formate dehydrogenase in chl mutants of Escherichia coli. In wild-type E. coli, molybdenum cofactor activity was present in both the soluble and membrane-associated fractions when the cells were grown either aerobically or anaerobically, with and without nitrate. Molybdenum cofactor in the soluble fraction decreased when the membrane-bound nitrate reductase and formate dehydrogenase were induced. In the chl mutants, molybdenum cofactor activity was found in the soluble fraction of chlA, chlB, chlC, chlD, chlE, and chlG, but only chlB, chlC, chlD, and chlG expressed cofactor activity in the membrane fraction. The defect in the chlA mutants which prevented incorporation of the soluble cofactor into the membrane also caused the soluble cofactor to be defective in its ability to bind molybdenum. This cofactor was not active in the absence of molybdate, and it required at least threefold more molybdate than did the wild type in the Neurospora crassa nit-1 complementation assay. However, the cofactor from the chlA strain mediated the dimerization of the nit-1 subunits in the presence and absence of molybdate to yield the 7.9S dimer. Growth of chlA mutants in medium with increased molybdate did not repair the defect in the chlA cofactor nor restore the molybdoenzyme activities. Thus, molybdenum cofactor was synthesized in all the chl mutants, but additional processing steps may be missing in chlA and chlE mutants for proper insertion of cofactor in the membrane.  相似文献   

15.
BACKGROUND: All mononuclear molybdoenzymes bind molybdenum in a complex with an organic cofactor termed molybdopterin (MPT). In many bacteria, including Escherichia coli, molybdopterin can be further modified by attachment of a GMP group to the terminal phosphate of molybdopterin to form molybdopterin guanine dinucleotide (MGD). This modification reaction is required for the functioning of many bacterial molybdoenzymes, including the nitrate reductases, dimethylsulfoxide (DMSO) and trimethylamine-N-oxide (TMAO) reductases, and formate dehydrogenases. The GMP attachment step is catalyzed by the cellular enzyme MobA. RESULTS: The crystal structure of the 21.6 kDa E. coli MobA has been determined by MAD phasing with selenomethionine-substituted protein and subsequently refined at 1. 35 A resolution against native data. The structure consists of a central, predominantly parallel beta sheet sandwiched between two layers of alpha helices and resembles the dinucleotide binding Rossmann fold. One face of the molecule bears a wide depression that is lined by a number of strictly conserved residues, and this feature suggests that this is where substrate binding and catalysis take place. CONCLUSIONS: Through comparisons with a number of structural homologs, we have assigned plausible functions to several of the residues that line the substrate binding pocket. The enzymatic mechanism probably proceeds via a nucleophilic attack by MPT on the GMP donor, most likely GTP, to produce MGD and pyrophosphate. By analogy with related enzymes, this process is likely to require magnesium ions.  相似文献   

16.
17.
The molybdopterin content of Escherichia coli mod and mog mutants was estimated by conversion to the form A derivative. The results are in accord with complete phenotypic repair of mod, and incomplete repair of mog, by culture in high concentrations of molybdate. A possible role for Mog as a molybdochelatase is discussed.  相似文献   

18.
The final stages of bacterial molybdenum cofactor (Moco) biosynthesis correspond to molybdenum chelation and nucleotide attachment onto an unique and ubiquitous structure, the molybdopterin. Using a bacterial two-hybrid approach, here we report on the in vivo interactions between MogA, MoeA, MobA, and MobB implicated in several distinct although linked steps in Escherichia coli. Numerous interactions among these proteins have been identified. Somewhat surprisingly, MobB, a GTPase with a yet unclear function, interacts with MogA, MoeA, and MobA. Probing the effects of various mo. mutations on the interaction map allowed us (i) to distinguish Moco-sensitive interactants from insensitive ones involving MobB and (ii) to demonstrate that molybdopterin is a key molecule triggering or facilitating MogA-MoeA and MoeA-MobA interactions. These results suggest that, in vivo, molybdenum cofactor biosynthesis occurs on protein complexes rather than by the separate action of molybdenum cofactor biosynthetic proteins.  相似文献   

19.
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5′-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.  相似文献   

20.
A di-(carboxamidomethyl) derivative of molybdopterin, the organic component of the molybdenum cofactor, has been prepared under conditions favoring retention of all of the structural features of the molecule. The specific radioactivity of [1-14C]iodoacetamide incorporated relative to the amount of phosphate indicated two alkylation sites per pterin. Energy-dispersive x-ray analysis of the derivative showed the presence of 2 sulfurs in the derivative. An exact mass corresponding to the molecular formula C14H18N7O5S2 was obtained for the MH+ ion of the alkylated, dephosphorylated compound by fast atom bombardment mass spectroscopy. 1H NMR spectra of the phosphorylated and dephosphorylated forms of alkylated molybdopterin, in conjunction with the other data, have provided strong corroboration of the validity of the proposed structure of molybdopterin (Johnson, J. L., and Rajagopalan, K. V. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6856-6860) as a 6-alkylpterin with a 4-carbon side chain containing an enedithiol on C-1' and C-2', a secondary alcohol on C-3', and a phosphorylated primary alcohol on C-4'. As isolated, the di-(carboxamido-methyl)molybdopterin was found to be a 5,6,7,8-tetrahydropterin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号