首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methods for immobilizing champagne yeasts, physiological and biochemical characteristics of the immobilized cells, and problems of their utilization in the production of quality champagne wines are reviewed. Studies aimed at the development of efficient biocatalysts for champaignizing wines using bottle fermentation (method champenoise) and tank processing (bulk, or Charmat process), based on the use of immobilized yeast cells, are described. Data on the industrial use of such biocatalysts in countries manufacturing champagne wines are presented. Problems and prospects of further research in this field are discussed.  相似文献   

2.
Methods for immobilizing champagne yeasts, physiological and biochemical characteristics of the immobilized cells, and problems of their utilization in the production of quality champagne wines are reviewed. Studies aimed at the development of efficient biocatalysts for champagnizing wines using bottle fermentation (methode champenoise) and tank processing (bulk, or Charmat process) based on the use of immobilized yeast cells are described. Data on the industrial use of such biocatalysts in countries manufacturing champagne wines are presented. Problems and prospects of further research in this field are discussed.  相似文献   

3.
Until recently it was only practical to use immobilized systems containing single enzymes or whole cells. More complex systems providing cofactor regeneration outside living cells have now been developed; coimmobilization of enzymes, cells and organelles from different organisms promises to improve further the industrial feasibility of immobilized biocatalysts.  相似文献   

4.
The use of immobilized biocatalysts for producing known or new antibiotics is presented. An evaluation of the applicability of this concept in the fascinating field of peptide antibiotic bioconversions and fermentations is also given.The use of immobilized enzymes, organelles and cells to synthesize antibiotics as an alternative method to conventional fermentation is discussed. In vitro total enzymatic antibiotic synthesis is illustrated with the ‘multienzyme thiotemplate mechanism’ of Bacillus brevis, the producer of gramicidin S. Total synthesis of peptide antibiotics, based on immobilized living cells, has recently been demonstrated with penicillin, bacitracin, nisin and a few other antibiotics.As an industrial example of the use of enzymes or cells to convert peptide antibiotics into therapeutically useful derivatives, free and immobilized penicillin acylases, producing the penicillin nucleus 6-aminopenicillanic acid (6-APA), are reviewed as well as their potential to synthesize semisynthetic β-lactams (penicillins, cephalosporins).Acylases, acetylesterases and α-amino acid ester hydrolases acting on cephalosporin-compounds and yielding valuable intermediary or end products have also gained wide interest. Stereospecific enzymic side-chain preparations for semisynthetic penicillin and cephalosporin production have recently reached the industrial stage. Bioconversion possibilities with the novel β-lactam compounds are suggested.These examples of simple single-step, as well as complex multi-step, enzyme reactions point to the vast potential of immobilized biocatalyst technology in fermentation science, in organic synthesis and in biotechnological processes in general.  相似文献   

5.
Since the large-scale application of immobilized enzymes in the 1960s, substantial research efforts have aimed to optimize the structure of carrier materials for better catalytic efficiency. In this regard, nanoscale materials provide the upper limits in balancing the key factors that determine the efficiency of biocatalysts, including surface area, mass transfer resistance, and effective enzyme loading. Various nanomaterials, such as nanoparticles, nanofibers, nanotubes and nanoporous matrices, have shown potential for revolutionizing the preparation and use of biocatalysts. Beyond their high surface area:volume ratios, nanoscale biocatalyst systems exhibit unique behaviors that distinguish them from traditional immobilized systems. The Brownian motion of nanoparticles, confining effect of nanopores and self-assembling behaviors of discrete nanostructures are providing exciting opportunities in this field. The development of catalyst systems that are highly stable and efficient, capable of self-targeting or that function as molecular machines to catalyze multiple reactions is rapidly reshaping our vision of biocatalysts.  相似文献   

6.
Enzyme immobilization often achieves reusable biocatalysts with improved operational stability and solvent resistance. However, these modifications are generally associated with a decrease in activity or detrimental modifications in catalytic properties. On the other hand, protein engineering aims to generate enzymes with increased performance at specific conditions by means of genetic manipulation, directed evolution and rational design. However, the achieved biocatalysts are generally generated as soluble enzymes, ?thus not reusable- and their performance under real operational conditions is uncertain.Combined protein engineering and enzyme immobilization approaches have been employed as parallel or consecutive strategies for improving an enzyme of interest. Recent reports show efforts on simultaneously improving both enzymatic and immobilization components through genetic modification of enzymes and optimizing binding chemistry for site-specific and oriented immobilization. Nonetheless, enzyme engineering and immobilization are usually performed as separate workflows to achieve improved biocatalysts.In this review, we summarize and discuss recent research aiming to integrate enzyme immobilization and protein engineering and propose strategies to further converge protein engineering and enzyme immobilization efforts into a novel “immobilized biocatalyst engineering” research field. We believe that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocatalysts, potentially paving the way for a qualitative jump in the development of efficient, stable biocatalysts with greater real-world potential in challenging bioprocess applications.  相似文献   

7.
固定化细胞技术及其应用研究进展   总被引:1,自引:0,他引:1  
细胞固定技术是将具有特定生理功能的生物细胞用一定的方法进行固定,并以其作为生物催化剂加以利用的一门技术。相对于游离的单细胞,固定化细胞可简化生产工艺,降低生产成本。本文回顾了细胞固定技术在制备方法和载体材料等方面的研究进展,并总结了近几年来固定化细胞技术在新能源开发、食品加工及环境污染物处理中的应用,对其发展前景进行展望。  相似文献   

8.
Engineering principles are used in the exploitation of biocatalysts derived from cells. The purity of reagents, catalysts and maintenance of operation variables are extremely important for bioengineering systems. Any change in the purity of reagents or in operation variables usually leads to a dramatic decrease in productivity. Cellular systems, however, are able to work with relatively high impure conditions and increase their productivity in response to external signals. Thus the seemingly disordered 'bag of juice' or cytoplasm has more order and much higher order of integration than first appears. Learning the semantics of this paradoxical ability of order and integration would help bioengineers to understand and enhance productivity even using impure reagents.  相似文献   

9.
Bacillus subtilis lipase A (BSLA) has been extensively studied through protein engineering; however, its immobilization and behavior as an insoluble biocatalyst have not been extensively explored. In this work, for the first time, a direct immobilization of recombinant BSLA from microbial culture supernatant was reported, using chemically modified porous with different electrostatic, hydrophobic, hydrophilic, and hydrophilic−hydrophobic enzyme-support interactions. The resulting biocatalysts were evaluated based on their immobilization kinetics, activity expression (pH 7.4), thermal stability (50 °C), solvent resistance and substrate preference. Biocatalysts obtained using glyoxyl silica support resulted in the selective immobilization of BSLA, resulting in an activity recovery of 50 % and an outstanding aqueous stabilization factor of 436, and 9.5 in isopropyl alcohol, compared to the free enzyme. This selective immobilization methodology of BSLA allows to efficiently generate immobilized biocatalysts, thus avoiding laborious purification steps from cell culture supernatant, which is usually a limiting step when large amounts of enzyme variants or candidates are assessed as immobilized biocatalysts. Direct enzyme immobilization from cell supernatant provides an interesting tool which can be used to facilitate the development and assessment of immobilized biocatalysts from engineered enzyme variants and mutant libraries, especially in harsh conditions, such as high temperatures or non-aqueous solvents, or against non-water-soluble substrates. Furthermore, selective immobilization approaches from cell culture supernatant or clarified lysates could help bridging the gap between protein engineering and enzyme immobilization, allowing for the implementation of immobilization steps in high throughput enzyme screening platforms for their potential use in directed evolution campaigns.  相似文献   

10.
Immobilized cell technology attracts considerable attention because of the many advantages it offers over conventional suspended-cell fermentations. Important advances continue to be made in the potential use of immobilized cells as biocatalysts. This review is mainly devoted to the analysis of recent literature on the applications of immobilized fungal cell systems, ranging from the production or transformation of useful compounds (e.g. organic acids, enzymes, antibiotics, steroids, etc.) to wastewater treatment. The problems and future industrial applications are also discussed.Based on an invited lecture presented at the Convegno RAISA on Sistemi Biologici Immobilizati in Bologna, Italy, on 3 to 4 November 1992.  相似文献   

11.
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.  相似文献   

12.
Yeast cell-surface display—applications of molecular display   总被引:11,自引:0,他引:11  
In a cell-surface engineering system established using the yeast Saccharomyces cerevisiae, novel, so-called arming yeasts are constructed that are armed with biocatalysts in the form of enzymes, functional proteins, antibodies, and combinatorial protein libraries. Among the many advantages of the system, in which proteins are genetically displayed on the cell surface, are easy reproduction of the displayed biocatalysts and easy separation of product from catalyst. As proteins and peptides of various kinds can be displayed on the yeast cell surface, the system is expected to allow the preparation of tailor-made functional proteins. With its ability to express many of the functional proteins necessary for post-translational modification and in a range of different sizes, the yeast-based molecular display system appears uniquely useful among the various display systems so far developed. Capable of conferring novel additional abilities upon living cells, cell-surface engineering heralds a new era of combinatorial bioengineering in the field of biotechnology. This mini-review describes molecular display using yeast and its various applications.  相似文献   

13.
Fresh, defrosted and delignified brewer's spent grains (BSG) were used as yeast supports for alcoholic fermentation of molasses. Glucose solution (12%) with and without nutrients was used for cell immobilization on fresh BSG, without nutrients for cell immobilization on defrosted and with nutrients for cell immobilization on delignified BSG. Repeated fermentation batches were performed by the immobilized biocatalysts in molasses of 7, 10 and 12 initial Baume density without additional nutrients at 30 and 20 degrees C. Defrosted BSG immobilized biocatalyst was used only for repeated fermentation batches of 7 initial Baume density of molasses without nutrients at 30 and 20 degrees C. After immobilization, the immobilized microorganism population was at 10(9) cells/g support for all immobilized biocatalysts. Fresh BSG immobilized biocatalyst without additional nutrients for yeast immobilization resulted in higher fermentation rates, lower final Baume densities and higher ethanol productivities in molasses fermentation at 7, 10 and 12 initial degrees Be densities than the other above biocatalysts. Adaptation of defrosted BSG immobilized biocatalyst in the molasses fermentation system was observed from batch to batch approaching kinetic parameters reported in fresh BSG immobilized biocatalyst. The results of this study concerning the use of fresh or defrosted BSG as yeast supports could be promising for scale-up operation.  相似文献   

14.
Summary A method is described for the on-line observation of immobilized, growing microorganisms in a microreactor mounted on a light microscope to determine several physiological parameters such as cell size and colony size, growth rates, spatial and temporal distribution of cells which are entrapped within transparent gels. The results can be used for modelling growth and diffusion behaviour in biocatalysts to optimize environmental and industrial applications of immobilized cells.  相似文献   

15.
Aromatic compounds are abundant in aqueous environments due to natural resources or different manufacturer’s wastewaters. In this study, phenol degradation by the yeast, Trichosporon cutaneum ADH8 was compared in three forms namely: free cells, nonmagnetic immobilized cells (non-MICs), and magnetically immobilized cells (MICs). In addition, three different common immobilization supports (alginate, agar, and polyurethane foams) were used for cell stabilization in both non-MICs and MICs and the efficiency of phenol degradation using free yeast cells, non-MICs, and MICs for ten consecutive cycles were studied. In this study, MICs on alginate beads by 12 g/l Fe2O3 magnetic nanoparticles had the best efficiency in phenol degradation (82.49%) and this amount in the seventh cycle of degradation increased to 95.65% which was the highest degradation level. Then, the effect of magnetic and nonmagnetic immobilization on increasing the stability of the cells to alkaline, acidic, and saline conditions was investigated. Based on the results, MICs and non-MICs retained their capability of phenol degradation in high salinity (15 g/l) and acidity (pH 5) conditions which indicating the high stability of immobilized cells to those conditions. These results support the effectiveness of magnetic immobilized biocatalysts and propose a promising method for improving the performance of biocatalysts and its reuse ability in the degradation of phenol and other toxic compounds. Moreover, increasing the resistance of biocatalysts to extreme conditions significantly reduces costs of the bioremediation process.  相似文献   

16.
The integration of enzymes with solid materials is important in many biotechnological applications, including the use of immobilized enzymes for biocatalytic synthesis. The development of functional enzyme-material composites is restrained by the lack of molecular-level insight into the behavior of enzymes in confined, surface-near environments. Here, we review recent advances in surface-sensitive spectroscopic techniques that push boundaries for the determination of enzyme structure and orientation at the solid-liquid interface. We discuss recent evidence from single-molecule studies showing that analyses sensitive to the temporal and spatial heterogeneities in immobilized enzymes can succeed in disentangling the effects of conformational stability and active-site accessibility on activity. Different immobilization methods involve distinct trade-off between these effects, thus emphasizing the need for a holistic (systems) view of immobilized enzymes for the rational development of practical biocatalysts.  相似文献   

17.
Directed evolution of enzymes and pathways for industrial biocatalysis   总被引:7,自引:0,他引:7  
Directed evolution has become a powerful tool for developing enzyme and whole cell based biocatalysts. Significant recent advances include the creation of novel enzyme functions and the development of several new efficient directed evolution methods. The combination of directed evolution and rational design promises to accelerate the development of biocatalysts for applications in the pharmaceutical, chemical and food industries.  相似文献   

18.
The use of enzymes and whole bacterial cells has allowed the production of a plethora of compounds that have been used for centuries in foods and beverages. However, only recently we have been able to master techniques that allow the design and development of new biocatalysts with high stability and productivity. Rational redesign and directed evolution have lead to engineered enzymes with new characteristics whilst the understanding of adaptation mechanisms in bacterial cells has allowed their use under new operational conditions. Bacteria able to thrive under the most extreme conditions have also provided new and extraordinary catalytic processes. In this review, the new tools available for the improvement of biocatalysts are presented and discussed.  相似文献   

19.
Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and kappa-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe(3)O(4) nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g(-1) saturation magnetization. When the mixture of gellan gel and the Fe(3)O(4) nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe(3)O(4) nanoparticles was 9 mg ml(-1) and the saturation magnetization of magnetically immobilized cells was 11.08 emu g(-1). Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds.  相似文献   

20.
Summary Cells ofThermoanaerobium brockii were immobilized by entrapment methods as easy-to-handle biocatalyst for stereoselective reductions of oxo-acid esters. Different matrix materials were tested: agarose, k-carrageenan, alginate, polyacrylamide and polyurethanes. The two latter matrices allowed useful lifetimes of the immobilized biocatalysts of more than 2 months at thermophilic operation temperatures (around 65°C). Permeabilization of cells did not improve the catalytic activity. Immobilization of the cells did not enhance the thermostability. Only after a considerable period of operation could the immobilized biocatalysts be fed with medium lacking the complex substrates yeast extract and tryptone. Compared with freely suspended cells, reaction rates were lower. The immobilized system proved to be a relatively stable easy-to-handle biocatalyst, however, the freely suspended cells were superior with respect to flexibility of application and reaction velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号