首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pyridoxamine (PM), originally described as a post-Amadori inhibitor of formation of advanced glycation end-products (AGEs), also inhibits the formation of advanced lipoxidation end-products (ALEs) on protein during lipid peroxidation reactions. In addition to inhibition of AGE/ALE formation, PM has a strong lipid-lowering effect in streptozotocin (STZ)-induced diabetic and Zucker obese rats, and protects against the development of nephropathy in both animal models. PM also inhibits the development of retinopathy and neuropathy in the STZ-diabetic rat. Several products of reaction of PM with intermediates in lipid autoxidation have been identified in model reactions in vitro and in the urine of diabetic and obese rats, confirming the action of PM as an AGE/ALE inhibitor. PM appears to act by a mechanism analogous to that of AGE-breakers, by reaction with dicarbonyl intermediates in AGE/ALE formation. This review summarizes current knowledge on the mechanism of formation of AGE/ALEs, proposes a mechanism of action of PM, and summarizes the results of animal model studies on the use of PM for inhibiting AGE/ALE formation and development of complications of diabetes and hyperlipidemia.  相似文献   

2.
We isolated a novel acid-labile yellow chromophore from the incubation of lysine, histidine and d-threose and identified its chemical structure by one and two-dimensional NMR spectroscopy combined with LC-tandem mass spectrometry. This new cross-link exhibits a UV absorbance maximum at 305 nm and a molecular mass of 451 Da. The proposed structure is 2-amino-5-(3-((4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)methyl)-4-(1,2-dihydroxyethyl)-2-formyl-1H-pyrrol-1-yl)pentatonic acid, a cross-link between lysine and histidine with addition of two threose molecules. It was in part deduced and confirmed through synthesis of the analogous compound from n-butylamine, imidazole and d-threose. We assigned the compound the trivial name histidino-threosidine. Systemic incubation revealed that histidino-threosidine can be formed in low amounts from fructose, glyceraldehyde, methylglyoxal, glycolaldehyde, ascorbic acid, and dehydroascorbic acid, but at a much higher yield with degradation products of ascorbic acid, i.e. threose, erythrose, and erythrulose. Bovine lens protein incubated with 10 and 50 mM threose for two weeks yielded 560 and 2840 pmol/mg histidino-threosidine. Histidino-threosidine is to our knowledge the first Maillard reaction product known to involve histidine in a crosslink.  相似文献   

3.
Reducing sugars can react with the free amino groups of proteins to form a heterogeneous group of compounds known as advanced glycation endproducts (AGEs) or Maillard reaction products. The objective of this investigation was to monitor the nonenzymatic glycation of DNA nucleosides and to characterize the formation of nucleoside AGEs using capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), UV fluorescence spectroscopy, and mass spectrometry. Deoxyguanosine, deoxyadenosine, deoxythymidine, and deoxycytidine were used as the model nucleosides and were incubated over time with glucose, galactose, or glyceraldehyde. Under increasing concentrations and time, deoxyguanosine exhibited the highest rate of glycation with glyceraldehyde. Deoxyadenosine and deoxycytidine exhibited comparable reactivity with glyceraldehyde and no appreciable reactivity with galactose or glucose. No reactivity was observed between deoxythymidine and the sugars. A combination of CE, HPLC, UV fluorescence spectroscopy, and mass spectrometry provided a convenient method for characterizing nucleoside AGEs and for monitoring the physical factors that influence the formation of sugar adducts of DNA nucleosides.  相似文献   

4.
A mathematical treatment of protein modification reactions is presented, and it is shown thai in these cases protein modification is described by a summation of exponential functions of reaction time, the number of exponentials being equal to the number of modified protein species. It is shown that in cases of protein modification cooperativity, there is a strict dependence of the coefficients of the multiexponential modification equation on the constants of the same equation. The conditions necessary for a reduction of a multiexponential protein modification equation to one of a summation of two exponentials only are examined. The possible formulae for the coefficients of a two-exponential-summation equation, used to describe the modification of protein models with two, three or four modifiable residues (as well as some aspects of models with five and six modifiable residues) per protein molecule are derived. It is seen that the number of such coefficients is severely limited. The most frequently obtained formula for the lower stoichiomelric coefficient of a 'wo-exponential-summation equation is Aka/(ka-kb). where kb and kb are the constants of the two exponentials of the equation, and A is a constant. The value most frequently arrived at for A is (n?1)/n, where n is the number of modifiable residues per protein molecule, while values such as 1/n, or a/n (where a is an integer, and also where a < n) are also possible. In most of the cooperative protein modification models worked out, ka is identical with kn, viz., ka is identical with the rate constant for the first stoichiometric protein modification.  相似文献   

5.
In Diabetes Mellitus (DM), glucose and the aldehydes glyoxal and methylglyoxal modify free amino groups of lysine and arginine of proteins forming advanced glycation end products (AGEs). Elevated levels of these AGEs are implicated in diabetic complications including nephropathy. Our objective was to measure carboxymethyl cysteine (CMC) and carboxyethyl cysteine (CEC), AGEs formed by modification of free cysteine sulfhydryl groups of proteins by these aldehydes, in plasma proteins of patients with diabetes, and investigate their association with the albumin creatinine ratio (ACR, urine albumin (mg)/creatinine (mmol)), an indicator of nephropathy. Blood was collected from forty-two patients with type 1 and 2 diabetes (18–36 years) and eighteen individuals without diabetes (17–35 years). A liquid chromatography-mass spectrophotometric method was developed to measure plasma protein CMC and CEC levels. Values for ACR and hemoglobin A1C (HbA1C) were obtained. Mean plasma CMC (μg/l) and CEC (μg/l) were significantly higher in DM (55.73 ± 29.43, 521.47 ± 239.13, respectively) compared to controls (24.25 ± 10.26, 262.85 ± 132.02, respectively). In patients with diabetes CMC and CEC were positively correlated with ACR, as was HbA1C. Further, CMC or CEC in combination with HbA1C were better predictors of nephropathy than any one of these variables alone. These results suggest that glucose, glyoxal, and methylglyoxal may all be involved in the etiology of diabetic nephropathy.  相似文献   

6.
Rojas A  Morales MA 《Life sciences》2004,76(7):715-730
The formation of advanced glycation end-products (AGEs), also called the Maillard reaction, occurs ubiquitously and irreversibly in patients with diabetes mellitus, and its consequences are especially relevant to vascular dysfunctions. The interaction of AGEs with their receptors (RAGE) has been implicated in the development of vascular complications. This interaction elicits remarkable vascular cell changes analogous to those observed in diabetes mellitus, including angiogenic and thrombogenic responses of endothelial cells, increased oxidative stress, and functional alterations in vascular tone control. This review focuses on AGEs formation, the interaction with their specific receptors and how the triggered intracellular events determine functional alterations of vascular endothelium. Finally, some potential pharmacological approaches undertaken to circumvent the deleterious effects of AGEs are also discussed.  相似文献   

7.
One of the hypotheses trying to explain the process of aging is the idea of glycation of proteins. This reaction, also called the Maillard or browning reaction, may explain age-related symptoms such as cataract, atherosclerosis and modification of collagen-containing tissues. Diabetics, which posses elevated blood sugar levels, show signs of accelerated aging exposing similar complications. The Maillard reaction, which occurs on a large scale in vivo, may play a key role in the initiation of these symptoms.  相似文献   

8.
Advanced glycation end-products (AGEs) are formed over several weeks to months by non-enzymatic glycation and oxidation (“glycoxidation”) reactions between carbohydrate-derived carbonyl groups and protein amino groups, known as the Maillard reaction. Pentosidine is one of the best-characterized AGEs and is accepted as a satisfactory marker for glycoxidation in vivo. The present study was intended to measure pentosidine concentrations in umbilical cord blood from newborns with various gestational ages using our recently established high-performance liquid chromatography method [Tsukahara, H. et al. (2003) Pediatr. Res. 54, 419–424]. Our study demonstrates, for the first time, that pentosidine is detected in most of the umbilical blood samples. This study also shows that the umbilical blood concentrations of pentosidine are considerably lower than normal adult values, but that they increase with gestation progression and fetal growth. Umbilical pentosidine concentrations were significantly elevated in newborns of mothers with preeclampsia compared to those of mothers without preeclampsia. We conclude that accumulation of AGEs and oxidative stress occurs in fetal tissues and organs in utero at the early stage of human life and that their accumulation is augmented in the maternal preeclampsic condition.  相似文献   

9.
Advanced glycation end-products (AGEs) are formed over several weeks to months by non-enzymatic glycation and oxidation (“glycoxidation”) reactions between carbohydrate-derived carbonyl groups and protein amino groups, known as the Maillard reaction. Pentosidine is one of the best-characterized AGEs and is accepted as a satisfactory marker for glycoxidation in vivo. The present study was intended to measure pentosidine concentrations in umbilical cord blood from newborns with various gestational ages using our recently established high-performance liquid chromatography method [Tsukahara, H. et al. (2003) Pediatr. Res. 54, 419-424]. Our study demonstrates, for the first time, that pentosidine is detected in most of the umbilical blood samples. This study also shows that the umbilical blood concentrations of pentosidine are considerably lower than normal adult values, but that they increase with gestation progression and fetal growth. Umbilical pentosidine concentrations were significantly elevated in newborns of mothers with preeclampsia compared to those of mothers without preeclampsia. We conclude that accumulation of AGEs and oxidative stress occurs in fetal tissues and organs in utero at the early stage of human life and that their accumulation is augmented in the maternal preeclampsic condition.  相似文献   

10.
Methylglyoxal (MGO) and glyoxal (GO) are attracting considerable attention because of their role in the onset of diabetes symptoms. Therefore, to comprehend the molecular fundamentals of their pathological actions is of the utmost importance. In this study, the molecular interactions between resveratrol (RES) and human serum albumin (HSA) and the ability of the stilbene to counteract the oxidative damage caused by pathological concentrations of MGO and GO to the human plasma protein, was assessed. The oxidation of Cys34 in HSA as well as the formation of specific protein semialdehydes AAS (α-aminoadipic), GGS (γ-glutamic) and the accumulation of Advanced Glycation End-products (AGEs) was investigated. Resveratrol was found to neutralize both α-dicarbonyls by forming adducts detected by HESI-Orbitrap-MS. This antioxidant action was manifested in a significant reduction of AGEs. However, RES-α-dicarbonyl conjugates oxidized Cys34 and lysine, arginine and/or proline by a nucleophilic attack on SH and ε-NH groups in HSA. The formation of specific semialdehydes in HSA after incubation with GO and MGO at pathological concentrations was reported for the first time in this study, and may be used as early and specific biomarkers of the oxidative stress undergone by diabetic patients. The pro-oxidative role of the RES-α-dicarbonyl conjugates should be further investigated to clarify whether this action leads to positive or harmful clinical consequences. The biological relevance of human protein carbonylation as a redox signaling mechanism and/or as a reflection of oxidative damage and disease should also be studied in future works.  相似文献   

11.
Glycogen synthase kinase 3β (GSK3β) is increased by high glucose in mesangial cells. Thus, we studied the role of GSK3β in advanced glycation end-product (AGE)-induced effects in the proximal tubule-like LLC-PK1 cells. We found that AGE (100 μg/ml) time-dependently (8-48 h) increased phospho-GSK3β-Tyr216 (active GSK3β) and time-dependently (4-24 h) decreased phospho-GSK3β-Ser21/9 (inactive GSK3β) protein expression. Meanwhile, AGE (100 μg/ml) activated GSK3β kinase at 8-48 h. AGE (100 μg/ml) dose-dependently (75-100 μg/ml) decreased β-catenin protein expression but AGE did not decrease β-catenin protein expression until 48 h. SB216763 (a GSK3β inhibitor) and GSK3β shRNA attenuated AGE (100 μg/ml)-inhibited cell proliferation and protein expression of β-catenin and cyclin D1 at 48 h. SB216763 also attenuated AGE-induced type IV collagen. We conclude that AGE activates GSK3β in LLC-PK1 cells. AGE-inhibited β-catenin and cyclin D1 protein expression are dependent on GSK3β. Moreover, AGE-inhibited cell proliferation and AGE-induced type IV collagen protein expression are dependent on GSK3β.  相似文献   

12.
The most serious late complications of ageing and diabetes mellitus follow similar patterns in the dysfunction of retinal capillaries, renal tissue, and the cardiovascular system. The changes are accelerated in diabetic patients owing to hyperglycaemia and are the major cause of premature morbidity and mortality. These tissues and their optimal functioning are dependent on the integrity of their supporting framework of collagen. It is the modification of these properties by glycation that results in many of the damaging late complications. Initially glycation affects the interactions of collagen with cells and other matrix components, but the most damaging effects are caused by the formation of glucose-mediated intermolecular cross-links. These cross-links decrease the critical flexibility and permeability of the tissues and reduce turnover. In contrast to the renal and retinal tissue, the cardiovascular system also contains a significant proportion of the other fibrous connective tissue protein elastin, and its properties are similarly modified by glycation. The nature of these glycation cross-links is now being unravelled and this knowledge is crucial in any attempt to inhibit these deleterious glycation reactions.  相似文献   

13.
Chemical modification of amino groups in the molecule of islet-activating protein (IAP), pertussis toxin, resulted in differential modification of biological activities of the toxin estimated in vivo with rats. Acetamidination of ε-amino groups of 50% (or more) of lysine residues in the IAP molecule totally abolished the lymphocytosis-promoting activity, but exerted no effects on the epinephrine-hyperglycemia inhibitory activity, of the toxin. Both activities were abolished by acylation of 50% or more of the amino groups probably due to the destruction of the toxin's quarternary structure. In contrast, the subunit assembly of IAP was maintained after exhaustive acetamidination of its lysine residues. The ADP-ribosyltranferase (or NAD-glycohydrolase) activity of the A-protomer (the biggest subunit) of IAP, which is responsible for the principal action of the toxin, enhancing insulin secretory responses and thereby inhibiting epinephrine hyperglycemia, was not affected by acetamidination of lysine residues. Thus, the A-protomer moiety of IAP is not directly involved in, but the amino groups of lysine residues in other subunits are selectively essential for, the development of the toxin-induced lymphocytosis.  相似文献   

14.
Chemical modification of papain for use in alkaline medium   总被引:1,自引:0,他引:1  
Chemical modification is a useful method to recognize and modify functional determinants of enzymes. Papain, an endolytic cysteine protease (EC3.4.22.2) from Carica papaya latex has been chemically modified using different dicarboxylic anhydrides of citraconic, phthalic, maleic and succinic acids. These anhydrides reacted with five to six amino groups of the lysine residues in the enzyme, thereby changing the net charge of the enzyme from positive to negative. The resultant enzyme had its optimum pH shifted from 7 to 9 and change in temperature optima from 60 to 80 °C. The modified papain also had a higher thermostability. Stability of the modified papain was further increased by immobilization of the enzyme either by adsorption onto inert matrix or by entrapment in polysaccharide polymeric gels. Entrapment in starch gel showed better retention of enzyme activity. Incorporation of modified and immobilized enzymes to branded domestic detergent powders was found to have very good activity retention. The papain entrapped in starch gel showed better stability and activity retention than in other carbohydrate polymers when added to domestic detergent powders.  相似文献   

15.
Advanced glycation end products (AGE), formed by nonenzymatic Maillard reactions between carbohydrate and protein, contribute to the increase in chemical modification and crosslinking of tissue proteins with age. Acceleration of AGE formation in collagen during hyperglycemia, with resultant effects on vascular elasticity and basement membrane permeability, is implicated in the pathogenesis of diabetic complications. AGE-breakers, such as N-phenacylthiazolium (PTB) and N-phenacyl-4,5-dimethylthiazolium (PMT) halides, have been proposed as therapeutic agents for reversing the increase in protein crosslinking in aging and diabetes. We have confirmed that these compounds, as well as the AGE-inhibitor pyridoxamine (PM), cleave the model AGE crosslink, phenylpropanedione, and have studied the effects of these compounds in reversing the increased crosslinking of skin and tail collagen isolated from diabetic rats. Crosslinking of skin collagen, measured as the half-time for solubilization of collagen by pepsin in 0.5M acetic acid, was increased approximately 5-fold in diabetic, compared to nondiabetic rats. Crosslinking of tail tendon collagen, measured as insolubility in 0.05 N acetic acid, was increased approximately 10-fold. Collagen preparations were incubated in the presence or absence of AGE-breakers or PM in phosphate buffer, pH 7.4, for 24h at 37 degrees C. These treatments did not decrease the half-time for solubilization of diabetic skin collagen by pepsin or increase the acid solubility of diabetic tail tendon collagen. We conclude that, although AGE-breakers and PM cleave model crosslinks, they do not significantly cleave AGE crosslinks formed in vivo in skin collagen of diabetic rats.  相似文献   

16.
We have developed a separation system for N(epsilon)-(carboxyethyl)lysine (CEL) and N(epsilon)-(carboxymethyl)lysine (CML) by HPLC equipped with a styrene-divinylbenzene copolymer resin coupled with sulfonic group cation-exchange column and examined whether CEL is formed from proteins modified by glucose via the Maillard reaction. CEL was generated by incubating bovine serum albumin (BSA) with glucose, a reaction inhibited by aminoguanidine, but enhanced by phosphate. Although several aldehydes were detected during incubation of N(alpha)-acetyllysine with glucose, incubation of BSA with methylglyoxal alone generated CEL. These results indicate that methylglyoxal is responsible for CEL formation on protein in vitro.  相似文献   

17.
Guanidinosuccinic acid is an aberrant metabolite isolated 40 years ago in the blood and urine of uremic subjects and a suspect in the toxicity associated with renal failure. It plays a minor role in the bleeding diathesis of uremia, contributes to the methyl group deficiency of dialysis patients, and is a factor in the premature atherosclerosis of end stage renal disease through the induction of hyperhomocysteinemia. As a major player, however, in the diversity and severity of uremic symptoms, it is a disappointment. Recently its source has been identified. It results from the superoxidation of argininosuccinic acid, which leads, also, to the production of gamma glutamic semialdehyde, an advanced glycation end product (AGE), which normally results from from the Maillard reaction, the non-enzymatic browning of protein. AGEs stimulate cross-linkages in protein that lead ultimately to loss of function, phagocytosis, and removal, and are important elements in the premature aging characteristic of renal disease, and diabetes.  相似文献   

18.
Summary Chicken breast muscle is usually considered to be a relatively homogeneous white muscle and has therefore been widely used for studies of muscle proteins. In a previous study, however, we have found different M-region structures in different fibres from this muscle. Because of this result, we have now carried out a combined histochemical and ultrastructural survey of this muscle. In particular, we have made use of large transverse cryo-sections that include most of the muscle cross-section.Although the white region is fairly homogeneous in fibre content according to normal histochemical criteria (mAT-Pase), we have found that there is a gradation of fibre structure across the muscle. The bulk of the muscle stains conventionally for Type-II fibres according to mATPase tests (the white part) but, in the small red part of the muscle, there are also Type-I fibres together with the Type-II fibres. Superimposed on this division into Type-I and Type-II fibres are variations in fibre size, oxidative and glycolytic staining properties, and variations of Z-band width and M-band structure; there is no strict correlation among any of these parameters. The apparently uniform staining across most of the muscle when tested for myofibrillar ATPase may be a misleading indicator of fibre properties.  相似文献   

19.
Development of RNA interference as a novel class of therapeutics requires improved pharmacokinetic properties of short interfering RNA (siRNA). To confer enhanced serum stability to Sur10058, a hyperfunctional siRNA which targets survivin mRNA, a systematic modification at the 2'-sugar position and phosphodiester linkage was introduced into Sur10058. End modification of three terminal nucleotides by 2'-OMe and phosphorothioate substitutions resulted in a modest increase in serum stability, with 3' end modification being more effective. Alternating modification by 2'-OMe substitution significantly stabilized Sur10058, whereas phosphorothioate modification was only marginally effective. Through various combinations of 2'-OMe, 2'-F and phosphorothioate modifications that were directed mainly at pyrimidine nucleotides, we have identified several remarkably stable as well as efficient forms of Sur10058. Thus, our results provide an effective means to stabilize siRNA in human serum without compromising the knockdown efficiency. This advancement will prove useful for augmenting the in vivo potency of RNA interference.  相似文献   

20.
2-Hydroxyheptanal (2-HH) is one of the major aldehydes derived from peroxidation of polyunsaturated fatty acids. In the present study, to obtain an insight into the contributions of 2-HH to protein modifications during lipid peroxidation, a lysine-containing dipeptide, N(alpha)-hippuryllysine (N-benzoylglycyl-L-lysine, BGL), was reacted with 2-HH at neutral pH. The products were characterized on the basis of LC/MS and NMR spectroscopy. The reaction afforded a 2:1 2-HH-lysine adduct, 1-[5-(N-benzoylglycylamino)-5-carboxypentyl]-4-butyl-5-pentyl-1,2,6-trihydropyridin-3-one (I). In addition, we obtained a 1:1 2-HH-lysine adduct, N-[5-(N-benzoylglycylamino)-5-carboxypentyl]-1-amino-2-heptanone (III). The treatment of the purified III with 2-HH produced I. On the other hand, when the reaction mixture was allowed prolonged standing, I was slowly oxidized to 1-[5-(N-benzoylglycylamino)-5-carboxypentyl]-4-butyl-5-pentyl-3-hydroxypyridinium (V). This conversion was strongly accelerated by the addition of copper(II) ion and 2,2'-bipyridyl. We propose here that the above series of conversions is the main pathway for the modification of lysine residues of proteins by 2-HH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号