首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
This study focuses on the restoration of chalk grasslands over a 6‐year period and tests the efficacy of two management practices, hay spreading and soil disturbance, in promoting this process for phytophagous beetles. Restoration success for the beetles, measured as similarity to target species–rich chalk grassland, was not found to be influenced by either management practice. In contrast, restoration success for the plants did increase in response to hay spreading management. Although the presence of suitable host plants was considered to dictate the earliest point at which phytophagous beetles could successfully colonized, few beetle species colonized as soon as their host plants became established. Morphological characteristics and feeding habits of 27 phytophagous beetle species were therefore tested to identify factors that limited their colonization and persistence. The lag time between host plant establishment and colonization was greatest for flightless beetles. Beetles with foliage‐feeding larvae both colonized at slower rates than seed‐, stem‐, or root‐feeding species and persisted within the swards for shorter periods. Although the use of hay spreading may benefit plant communities during chalk grassland restoration, it did not directly benefit phytophagous beetles. Without techniques for overcoming colonization limitation for invertebrate taxa, short‐term success of restoration may be limited to the plants only.  相似文献   

2.
Soil organisms can strongly affect competitive interactions and successional replacements of grassland plant species. However, introduction of whole soil communities as management strategy in grassland restoration has received little experimental testing. In a 5-year field experiment at a topsoil-removed ex-arable site ( receptor site ), we tested effects of (1) spreading hay and soil, independently or combined, and (2) transplanting intact turfs on plant and soil nematode community development. Material for the treatments was obtained from later successional, species-rich grassland ( donor site ). Spreading hay affected plant community composition, whereas spreading soil did not have additional effects. Plant species composition of transplanted turfs became less similar to that in the donor site. Moreover, most plants did not expand into the receiving plots. Soil spreading and turf transplantation did not affect soil nematode community composition. Unfavorable soil conditions (e.g., low organic matter content and seasonal fluctuations in water level) at the receptor site may have limited plant and nematode survival in the turfs and may have precluded successful establishment outside the turfs. We conclude that introduction of later successional soil organisms into a topsoil-removed soil did not facilitate the establishment of later successional plants, probably because of the "mismatch" in abiotic soil conditions between the donor and the receptor site. Further research should focus on the required conditions for establishment of soil organisms at restoration sites in order to make use of their contribution to grassland restoration. We propose that introduction of organisms from "intermediate" stages will be more effective as management strategy than introduction of organisms from "target" stages.  相似文献   

3.
During recent decades, many studies have shown that the successful restoration of species-rich grasslands is often seed-limited because of depleted seed banks and limited seed dispersal in modern fragmented landscapes. In Europe, commercial seed mixtures, which are widely used for restoration measures, mostly consist of species and varieties of non-local provenance. The regional biodiversity of a given landscape, however, can be preserved only when seeds or plants of local provenance are used in restoration projects. Furthermore, the transfer of suitable target species of local provenance can strongly enhance restoration success.We review and evaluate the success of currently used near-natural methods for the introduction of target plant species (e.g. seeding of site-specific seed mixtures, transfer of fresh seed-containing hay, vacuum harvesting, transfer of turves or seed-containing soil) on restoration sites, ranging from dry and mesic meadows to floodplain grasslands and fens. Own data combined with literature findings show species establishment rates during the initial phase as well as the persistence of target species during long-term vegetation development on restoration sites.In conclusion, our review indicates that seed limitation can be overcome successfully by most of the reviewed measures for species introduction. The establishment of species-rich grasslands is most successful when seeds, seed-containing plant material or soil are spread on bare soil of ex-arable fields after tilling or topsoil removal, or on raw soils, e.g. in mined areas. In species-poor grasslands without soil disturbance and on older ex-arable fields with dense weed vegetation, final transfer rates were the lowest. For future restoration projects, suitable measures have to be chosen carefully from case to case as they differ considerably in costs and logistic effort. Long-term prospects for restored grassland are especially good when management can be incorporated in agricultural systems.  相似文献   

4.
Semi-natural pastures have rich plant and animal communities of high conservation value which depend on extensive management. As the area of such land decreases, abandoned semi-natural grasslands have been restored to re-establish biodiversity. Restoration schemes, which include thinning of woody plants and reintroduction of grazing, are mainly designed according to the responses of well-studied groups (such as vascular plants and birds). Weevils (Curculionidae) are a very diverse phytophagous beetle family. Here, we evaluated the restoration success of pastures for weevils (Curculionidae), by comparing their species diversity in abandoned, restored, and continuously grazed semi-natural pastures on 24 sites in central Sweden. Weevils were sampled by sweep-netting. We recorded 3019 weevil individuals belonging to 104 species. There was no statistically significant difference in species numbers between the pasture management treatments. However, weevil species composition of abandoned pastures differed from those in restored and continuously managed pastures, but there was no significant difference in community composition between restored and continuously grazed pastures. The abandoned sites tended to be dominated by polyphagous species, whereas the grazed sites contained more monophagous and oligophagous species. The number of weevil species was positively related to understory vegetation height and connectivity to other semi-natural grasslands and negatively related to the cover of trees and shrubs in the pastures. We conclude that restoration of abandoned semi-natural pastures is a good approach to restore weevil communities. To maintain a species rich weevil community, pastures should be managed to be relatively open, but still have patches of tall field-layer vegetation. Restoration and conservation measures should primarily be targeted on regions and landscapes where a high proportion of semi-natural grassland still remains.  相似文献   

5.
Intensification of framing practices after the Second World War has led to wide scale loss of semi-natural grasslands throughout the UK. Flood-plain meadows (NVC MG4 Alopecurus pratensisSanguisorba officinalis grassland) suffered under these changes in agricultural management, and now cover an area of <1500 ha in England and Wales. In 1985, an experiment was initiated at Somerford Mead, Oxford, with the target of re-creating MG4 grassland. The grassland was established with a sown seed mixture harvested from local MG4 grassland. A replicated block experiment was set up to look at the effects of sheep, cattle and no grazing on the establishment of the target floral community. In 2002, the effects of these management regimes on beetle communities were investigated. Grazing regime was seen to be the primary determinant of abundance, species richness and species assemblage of the beetle population. Vegetation structure was also found to influence beetle diversity. The percentage cover of the legume Trifolium repens had important effects on beetle community assemblage, whilst Trifolium pratense was strongly correlated with the abundance of three common phytophagous beetles. This study provides a preliminary investigation into the responses of beetle communities to management intended for the re-creation of the plant communities of this threatened grassland habitat.  相似文献   

6.
Restoration of species-rich grasslands on ex-arable land can help the conservation of biodiversity but faces three big challenges: absence of target plant propagules, high residual soil fertility and restoration of soil communities. Seed additions and top soil removal can solve some of these constraints, but restoring beneficial biotic soil conditions remains a challenge. Here we test the hypotheses that inoculation of soil from late secondary succession grasslands in arable receptor soil enhances performance of late successional plants, especially after top soil removal but pending on the added dose. To test this we grew mixtures of late successional plants in arable top (organic) soil or in underlying mineral soil mixed with donor soil in small or large proportions. Donor soils were collected from different grasslands that had been under restoration for 5 to 41 years, or from semi-natural grassland that has not been used intensively. Donor soil addition, especially when collected from older restoration sites, increased plant community biomass without altering its evenness. In contrast, addition of soil from semi-natural grassland promoted plant community evenness, and hence its diversity, but reduced community biomass. Effects of donor soil additions were stronger in mineral than in organic soil and larger with bigger proportions added. The variation in plant community composition was explained best by the abundances of nematodes, ergosterol concentration and soil pH. We show that in controlled conditions inoculation of soil from secondary succession grassland into ex-arable land can strongly promote target plant species, and that the role of soil biota in promoting target plant species is greatest when added after top soil removal. Together our results point out that transplantation of later secondary succession soil can promote grassland restoration on ex-arable land.  相似文献   

7.
Restoration of biodiversity enhances agricultural production   总被引:7,自引:1,他引:6  
Restoration of ecological communities is important to counteract global losses in biodiversity. However, restoration on agricultural land is perceived as being costly because of losses in agricultural production. We suggest the reported positive relationship between diversity and productivity means biodiversity could be used to enhance agricultural production. We examined this in hay meadow restoration experiments at seven sites across southern Britain. At each site two seed mixes ("species-poor" with 6–17 species and "species-rich" with 25–41 species) were applied in a randomised block experiment. Hay yield was higher in the species-rich treatment from the second year onward, by up to 60%. Comparing the two treatments in all sites, there was a simple linear relationship between the difference in species number and the amount of increase in hay production. Fodder quality was the same in both treatments. This suggests farmers can maximize high quality herbage production in re-sown grasslands by maximizing biodiversity.  相似文献   

8.
The effects of different restoration measures and management variants on the vegetation development of newly created calcareous grasslands were studied in southern Germany from 1993 to 2002. In 1993, fresh seed-containing hay from a nature reserve with ancient calcareous grasslands was transferred onto ex-arable fields with and without topsoil removal. Nine years after start of the restoration, the standing crop was lower and the cover of bare soil was higher on topsoil-removal sites than on sites without soil removal. Topsoil removal had a positive effect on the proportion of target species (class Festuco-Brometea), because the number and cover of productive meadow species (class Molinio-Arrhenatheretea) were reduced. Persistence of hay-transfer species and the number of newly colonizing target species were highest on topsoil-removal sites. On plots with and without soil removal, species richness and the number of target species increased quickly after hay transfer and were always higher on hay-transfer plots than on plots that had not received hay in 1993. In 2002, differences induced by hay transfer were still much more pronounced than differences between management regimes. Management by mowing, however, led to higher species richness, a greater number of target species and a lower number of ruderals in comparison to no management on restoration fields without soil removal. A detrended correspondence analysis (DCA) indicated that vegetation composition of the hay-transfer plots of the restoration fields still differed from the vegetation of ancient grasslands in the nature reserve. Vegetation of an ex-arable field in the nature reserve (last ploughed in 1959) showed an intermediate successional stage. In general our results indicate that the transfer of autochthonous hay is an efficient method for the restoration of species-rich vegetation, which allows not only quick establishment but also long-term persistence of target species.  相似文献   

9.
Species-rich plant communities characteristic for succession from mesotrophic open water to fen are very rare in The Netherlands. These vegetation types used to occur in turf ponds in the low lying peatland area, created by peat dredging and filled with water due to seepage of mesotrophic, well-buffered groundwater. One of the goals of the National Nature Policy Plan is to create new opportunities for the initial terrestrialization communities through ecological engineering, e.g., restoration and creation of open water habitats. Restoration of the abiotic conditions in acidified floating fen communities is only possible by a combined measure of removal of the Sphagnum-layer and superficial drainage of surplus rain water. New turfponds have been excavated. This study showed that the abiotic conditions (i.e., water depth and water chemistry) are favorable for the development of aquatic communities characteristic of mesotrophic conditions. The aquatic plant species found in the new ponds also point in this direction, e.g., Chara major and Ch. delicatula are very abundant as are seven Potamogeton species. It is concluded that a constant discharge of groundwater and a good connectivity between the ponds and the existing remnants of plant communities desired in the area are essential for the conservation and development of these species-rich plant communities.  相似文献   

10.
A period without management had transformed the vegetation of a species-rich fenmeadow, with no external change in the hydrological regime, into three communities: alder thicket (unmanaged 15 years), tall herb and sedge dominated communities (unmanaged 11 years). Following reintroduction of management (felling of alder thicket, mowing and grazing) the vegetation development was monitored and species cover was measured along a permanent transect before and during 12 years of restoration succession. Management increased the density of fen- meadow species and made the three communities more similar. The appearance of new fen species and the increase in species density followed immediately after the introduction of management. Thereafter, only a few new species appeared and the turnover index stabilised. Management by mowing and grazing both increased species density of herbs and promoted establishment of biennials and hemicryptophytes. Other plant groups responded differently to management: mowing increased total cover, the cover of grasses, and promoted phanerophytes and chamaephytes; grazing reduced the influence of these groups and promoted 'sedge & rush' and geophytes. Restoration was particularly successful in the felled alder thicket, but the success was caused by spreading of species from the pool of species within the site and establishment of species having persistent seed bank, i.e. inherent good potential for restoration. The results are discussed in relation to use of functional plant groups and Ellenberg N- and L-indices as response indicators for monitoring restoration progress.  相似文献   

11.
Species pool theory claims that diaspore and microsite availability limit species richness in plant communities. Wet meadows (Calthion) and litter meadows (Molinion, Caricion davallianae) belonging to the most species-rich meadows in the foothills of the Alps have suffered from a strong decrease since the 1970s. Restoration efforts including nutrient impoverishment and rewetting management after drainage and fertilization did not result in the re-establishment of the former species richness although the abiotic filter would have been appropriate for the re-colonization of many locally extinct species. In our experiment at four sites in the largest fen of Southwest-Germany we tested if the restoration success was seed- and gap-limited. We applied sowing and hay spreading (hay seed) as treatments to make seeds available and harrowing to increase gap availability. Sowing seeds or hay seed of species of the former meadow types increased species richness immediately. The proportion of re-established species was higher when additional harrowing was applied. Species richness could be increased not only in vascular plants but also in bryophytes when hay spreading was applied. The strongest re-development towards the target communities (defined through the abiotic filter and the species richness before drainage and fertilization) took place on those sites where hay spreading and harrowing were applied. Sowing seeds and hay seed were traditional techniques to establish e.g. litter meadows, both techniques have been applied for centuries. Even harrowing was described as early as the 19th century to increase the chance of establishing certain species. Therefore, the “application of the knowledge coming from the species pool theory” (although not named during this time) has been common practice since at least the 19th century.  相似文献   

12.
The transfer of seed‐containing hay is a restoration measure for the introduction of plant species of local provenance. We investigated the effect of hay transfer on species richness and on long‐term establishment of target plant and grasshopper species on former arable fields with and without topsoil removal in comparison to reference sites in a nature reserve. Plant species richness, the number of target plant species, and Red List plant species were significantly positively affected by hay transfer, both on the scale of whole restoration fields and on permanent plots of 4 m2. Eight years after the start of the restoration, only few of the transferred plant species had disappeared and some target species were newly found. Grasshoppers were affected not by hay transfer but by topsoil removal. The proportion of target grasshopper and plant species and Red List grasshopper species was higher on topsoil removal sites with low standing crop and high cover of bare soil than on sites without soil removal. On topsoil removal sites without hay, however, plant species richness was very low because of the slow natural dispersal of the target species. Vegetation and grasshopper communities still differed between restoration fields and the nature reserve. Nevertheless, our results indicate that the transfer of autochthonous seed‐containing hay is a successful method to establish species‐rich grasslands with a high proportion of target species.  相似文献   

13.
Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages between plants and microbes and reducing N availability.  相似文献   

14.
Both land use intensification and abandonment within grasslands lead to a homogenisation of vegetation structure. Therefore, specially structured microsites such as vegetation gaps with bare ground play an important role for species conservation within grasslands. Vegetation gaps are crucial for the establishment of low-competitive plant species and offer special microclimatic conditions essential for the development of the immature stages of many invertebrate species. The influence of small-scale soil disturbance in the form of mounds created by ecosystem engineers such as ants or moles on biodiversity is therefore of special scientific concern. The effects of mound-building species on plant species diversity have been extensively studied. However, knowledge on the significance of these species for the conservation of other animals is rare. In this study we analyse the importance of mounds created by the European mole (Talpa europaea) as an oviposition habitat for the small copper (Lycaena phlaeas) within Central European mesotrophic grasslands. Our study showed that host plants occurring at molehills were preferred for oviposition. Oviposition sites were characterised by an open vegetation structure with a high proportion of bare ground (with a mean coverage of about 50 %), a low cover of herbs and low-growing vegetation (mean height: 4.5 cm). Our study clearly illustrates the importance of small-scale soil disturbance for immature stages of L. phlaeas and the conservation of this species within mesotrophic grasslands. Mound-building ecosystem engineers, such as T. europaea, act as important substitutes for missing dynamics within mesotrophic grasslands by diversifying vegetation structure and creating small patches of bare soil.  相似文献   

15.
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.  相似文献   

16.
This paper is based on research of the restoration of species‐rich calcareous grasslands in The Netherlands, over the last 30 years. Chalk grassland is a semi‐natural vegetation with a high density of species at a small scale. This type of vegetation was once widespread in Western Europe as common grazing land, mainly for flocks of sheep for which the main function was dung production. In some regions of Central Europe, these grasslands were also used for hay production. The dung was used to maintain arable field production at a reasonable level. In the chalk district in the southernmost part of The Netherlands some 25 sites of this vegetation, varying in area from 0.05–4.5 ha, are still present. Chalk grassland completely lost its significance for modern agricultural production after the wide application of artificial fertilizer following World War II. This grassland has a high conservation value both for plants and animal species, of which a large number of species are exclusively restricted to this biotope. When conservation activities started at a large scale in the early 1960s, three different types of restoration activities could be distinguished: (1) restoration of fertilized sites; (2) restoration of abandoned grasslands; and (3) recreation of chalk grassland on former arable fields. The main aim of the restoration attempt is to create and/or improve sustainable conditions for both plant and animal species characteristic of the chalk grassland ecosystem. In the process of restoration, several phases of different activities can be distinguished: (1) pre‐restoration phase, during which information of the land use history is collected and, based on these data, clear restoration goals are established; (2) initial restoration phase, during which effects of former, non‐conservational land use has to be undone in order to stimulate germination and establishment of target species originating from soil seed bank and species pool; (3) consolidation phase, including the introduction and continuation of a regular management system for sustainable conservation; and (4) long‐term conservation strategy, including measures to prevent disturbance from the outside and genetic erosion and extinction of locally endangered plant populations.  相似文献   

17.
Soil disturbance is recognised as an important restoration measure for conserving biodiversity in sandy soils. We used a soil disturbance (ploughing) experiment in a sandy grassland as well as a semi-natural disturbance (slope erosion enhanced by cattle trampling) gradient on a sandy slope to test the soil disturbance effects on the ground-living beetle community. Both experimental disturbance and semi-natural disturbance favoured sandy grassland specialists, but there was no overall effect on beetle richness and abundance. Amara lucida and Harpalus spp. were favoured by disturbance while Calathus melanocephalus was disfavoured. Experimental ploughing significantly increased the proportion of red-listed species in disturbed plots compared to non-disturbed controls. In the semi-natural disturbance gradient we found that the beetle community on the disturbed slope differed from that of the flat areas, and there were tendencies for a higher proportion of red-listed species on the slope. We conclude that increasing the area of bare sand in sandy grasslands can have positive effects on many threatened species. Soil disturbance should thus be included as a regular measure in sandy grasslands under conservation management and as a measure to restore high biodiversity in areas where bare sand is rare.  相似文献   

18.
Semi-natural calcareous grasslands are of great conservation interest because of their high species richness, but they are threatened by land abandonment and nitrogen eutrophication. These plant communities evolved as a result of a long history of human activity, which generated and maintained these habitats by extensive grazing and mowing. Calcareous grasslands are listed as a priority for conservation in the EC Habitats Directive. However, the effects of different management regimes, nitrogen enrichment, and soil-borne pathogens on plant species diversity are less clear for grasslands of the Mediterranean Basin, compared to meadows in Northern and Central Europe. In this study, we assessed the impact of land abandonment, nitrogen enrichment, and fairy-ring fungi on species diversity in semi-natural grasslands found in the Mediterranean Basin by comparing the available literature with findings from recent studies carried out in Central Italy. In a series of field experiments, the cutting of abandoned grassland consistently reduced the living biomass of the dominant perennial grasses, such as Brachypodium rupestre and Bromus erectus, and promoted a rapid increase in species richness and diversity by allowing the establishment of rare species. There was a similar, but less effective, restoration of species diversity and composition in mowed grassland after litter removal. We also show that nitrogen enrichment at levels comparable to atmospheric deposition depresses species diversity, which also hampers the positive effects of litter removal. Our findings are consistent with previous results achieved in Northern and Central Europe, which however, mainly focused on grasslands with intermediate to high primary productivity levels. The limited availability of data from low-productivity, drought-prone Mediterranean grasslands requires further studies to assess the impact of land abandonment and nitrogen eutrophication in such ecosystems. Finally, we discuss the role of fairy-ring fungi in the maintenance of plant diversity in species-rich grassland. We show that fairy-ring fungi (e.g. Agaricus campestris) critically affect the spatial distribution and diversity of coexisting plant species. By killing the dominant perennial herbs, these radially growing plant pathogens produce empty niches for rare, short-lived species, thus affecting the vegetation pattern. Overall, our results are of interest for environmental managers, as they provide guidelines for the restoration of abandoned areas and the conservation of these species-rich habitats.  相似文献   

19.
Calcareous grasslands are among the most species-rich plant communities in Europe with a particularly high nature conservation value. During the past centuries their distribution has markedly decreased, at least partly due to urbanization. Thus we investigated the effects of urbanization on species diversity along a spatio-temporal urbanization gradient from traditionally managed grassland to areas affected by urban developments, which was situated in the plains northwest of Munich, Germany. Both a RLQ analysis linking species and environmental traits, and a redundancy analysis of the plant community features showed that soil disturbance, soil sealing and mean temperature explained most of the environmental variation along the gradient. The species in urban habitats showed increased insect pollination, earlier flowering and prolonged seed longevity. While urbanization favored short-lived species with dysochorous dispersal, the reference grasslands harbored more wind-pollinated perennials with effective vegetative spread and relatively large, short-lived seeds. Compared to the urban sites, traditionally used grasslands had a higher species diversity, more threatened species and a lower proportion of non-natives. We conclude that even under conservation management, urban habitats are not capable of maintaining the original biodiversity. However, we also found threatened species occurring exclusively in urban sites. Hence, urbanization decreased the area and diversity of traditional calcareous grasslands, but it also established niches for endangered species which are not adapted to the living conditions in calcareous grasslands.  相似文献   

20.
Biodiversity loss and its effects on humanity is of major global concern. While a growing body of literature confirms positive relationships between biodiversity and multiple ecological functions, the links between biodiversity, ecological functions and multiple ecosystem services is yet unclear. Studies of biodiversity–functionality relationships are mainly based on computer simulations or controlled field experiments using only few species. Here, we use a trait-based approach to integrate plant functions into an ecosystem service assessment to address impacts of restoration on species-rich grasslands over time. We found trade-offs among functions and services when analysing contributions from individual species. At the community level, these trade-offs disappeared for almost all services with time since restoration as an effect of increased species diversity and more evenly distributed species. Restoration to enhance biodiversity also in species-rich communities is therefore essential to secure higher functional redundancy towards disturbances and sustainable provision of multiple ecosystem services over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号