首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myofibroblasts of wound granulation tissue, in contrast to dermal fibroblasts, join stress fibers at sites of cadherin-type intercellular adherens junctions (AJs). However, the function of myofibroblast AJs, their molecular composition, and the mechanisms of their formation are largely unknown. We demonstrate that fibroblasts change cadherin expression from N-cadherin in early wounds to OB-cadherin in contractile wounds, populated with alpha-smooth muscle actin (alpha-SMA)-positive myofibroblasts. A similar shift occurs during myofibroblast differentiation in culture and seems to be responsible for the homotypic segregation of alpha-SMA-positive and -negative fibroblasts in suspension. AJs of plated myofibroblasts are reinforced by alpha-SMA-mediated contractile activity, resulting in high mechanical resistance as demonstrated by subjecting cell pairs to hydrodynamic forces in a flow chamber. A peptide that inhibits alpha-SMA-mediated contractile force causes the reorganization of large stripe-like AJs to belt-like contacts as shown for enhanced green fluorescent protein-alpha-catenin-transfected cells and is associated with a reduced mechanical resistance. Anti-OB-cadherin but not anti-N-cadherin peptides reduce the contraction of myofibroblast-populated collagen gels, suggesting that AJs are instrumental for myofibroblast contractile activity.  相似文献   

2.
Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are ubiquitously expressed proteases regulating several processes including cellular adhesion and motility as well as inflammation and angiogenesis. Calpains can be targeted by inhibitors, and their inhibition was shown to reduce organ damage in various disease models. We aimed to assess the role of calpains in skin healing and the potential benefit of calpain inhibition on scar formation. We used a pertinent model where calpain activity is inhibited only in lesional organs, namely transgenic mice overexpressing calpastatin (CPST), a specific natural calpain inhibitor. CPST mice showed a striking delay in wound healing particularly in the initial steps compared to wild types (WT). CPST wounds displayed reduced proliferation in the epidermis and delayed re-epithelization. Granulation tissue formation was impaired in CPST mice, with a reduction in CD45+ leukocyte infiltrate and in CD31+ blood vessel density. Interestingly, wounds on WT skin grafted on CPST mice (WT/CPST) showed a similar delayed healing with reduced angiogenesis and inflammation compared to wounds on WT/WT mice demonstrating the implication of calpain activity in distant extra-cutaneous cells during wound healing. CPST wounds showed a reduction in alpha-smooth muscle actin (αSMA) expressing myofibroblasts as well as αSMA RNA expression suggesting a defect in granulation tissue contraction. At later stages of skin healing, calpain inhibition proved beneficial by reducing collagen production and wound fibrosis. In vitro, human fibroblasts exposed to calpeptin, a pan-calpain inhibitor, showed reduced collagen synthesis, impaired TGFβ-induced differentiation into αSMA-expressing myofibroblasts, and were less efficient in a collagen gel contraction assay. In conclusion, calpains are major players in granulation tissue formation. In view of their specific effects on fibroblasts a late inhibition of calpains should be considered for scar reduction.  相似文献   

3.

Background  

During wound repair, fibroblasts orchestrate replacement of the provisional matrix formed during clotting with tenascin, cellular fibronectin and collagen III. These, in turn, are critical for migration of endothelial cells, keratinocytes and additional fibroblasts into the wound site. Fibroblasts are also important in the deposition of collagen I during scar formation. The CXC chemokine chicken Chemotactic and Angiogenic Factor (cCAF), is highly expressed by fibroblasts after wounding and during development of the granulation tissue, especially in areas where extracellular matrix (ECM) is abundant. We hypothesized that cCAF stimulates fibroblasts to produce these matrix molecules.  相似文献   

4.
Myofibroblasts are specialized fibroblasts responsible for granulation tissue contraction and the soft tissue retractions occurring during fibrocontractive diseases. The marker of fibroblast-myofibroblast modulation is the neo expression of alpha-smooth muscle actin (alpha-SMA), the actin isoform typical of vascular smooth muscle cells that has been suggested to play an important role in myofibroblast force generation. Actin isoforms differ slightly in their NH2-terminal sequences; these conserved differences suggest different functions. When the NH2-terminal sequence of alpha-SMA Ac-EEED is delivered to cultured myofibroblast in the form of a fusion peptide (FP) with a cell penetrating sequence, it inhibits their contractile activity; moreover, upon topical administration in vivo it inhibits the contraction of rat wound granulation tissue. The NH2-terminal peptide of alpha-skeletal actin has no effect on myofibroblasts, whereas the NH2-terminal peptide of beta-cytoplasmic actin abolishes the immunofluorescence staining for this isoform without influencing alpha-SMA distribution and cell contraction. The FPs represent a new tool to better understand the specific functions of actin isoforms. Our findings support the crucial role of alpha-SMA in wound contraction. The alpha-SMA-FP will be useful for the understanding of the mechanisms of connective tissue remodeling; moreover, it furnishes the basis for a cytoskeleton-dependent preventive and/or therapeutic strategy for fibrocontractive pathological situations.  相似文献   

5.
An increasing number of patients are being treated with growth hormone (GH) for the enhancement of body growth but also as an anti-aging strategy. However, the side effects of GH have been poorly defined. In this study we determined the effect of GH on wound repair and its mechanisms of action at the wound site. For this purpose, we performed wound healing studies in transgenic mice overexpressing GH. Full thickness incisional and excisional wounds of transgenic animals developed extensive, highly vascularized granulation tissue. However, wound bursting strength was not increased. Wound closure was strongly delayed as a result of enhanced granulation tissue formation and impaired wound contraction. The latter effect is most likely due to a significantly reduced number of myofibroblasts at the wound site. By using in vitro studies with stressed collagen lattices, we identified GH as an inhibitor of transforming growth factor beta-induced myofibroblast differentiation, resulting in a reduction in fibroblast contractile activity. These results revealed novel roles of GH in angiogenesis and myofibroblast differentiation, which are most likely not mediated via insulin-like growth factors at the wound site. Furthermore, our data suggested that systemic GH treatment is detrimental for wound healing in healthy individuals.  相似文献   

6.
In this study, we examined the impact of matrix metalloproteinases (MMP) on epithelialization, granulation tissue development, wound contraction, and alpha-smooth muscle actin (ASMA) expression during cutaneous wound repair through systemic administration of the synthetic broad-spectrum MMP inhibitor GM 6001 (N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide). Four full-thickness excisional wounds (50 mm2) on the back of 22 young female Sprague-Dawley rats, 12 treated with GM 6001 100 mg/kg and 10 with vehicle, were allowed to heal by secondary intention. GM 6001-treated wounds were minimally resurfaced with neoepithelium, despite unaltered keratinocyte proliferation in wound edges, whereas control wounds were completely covered with 3-7 cell layers of parakeratinized epithelium on post-wounding day 7. Hydroxyproline concentration, a marker of collagen, and cell proliferation in granulation tissue did not differ significantly between GM 6001-treated and control groups. Impaired wound contraction (P < 0.01) was associated with a dramatic reduction of ASMA-positive myofibroblasts in granulation tissue of GM 6001 wounds. This was not due to GM6001 blocking transforming growth factor-beta1 (TGF-beta1)-induced myofibroblast differentiation since GM 6001 did not inhibit TGF-beta1-induced ASMA expression and force generation in cultured rat dermal fibroblasts. The profound impairment of skin repair by the nonselective MMP inhibitor GM 6001 suggests that keratinocyte resurfacing, wound contraction, and granulation tissue organization are highly MMP-dependent processes.  相似文献   

7.
Inhibition of myofibroblasts by skin grafts.   总被引:7,自引:0,他引:7  
The myofibroblast population was studied by electron microscopy in rat wounds healing by (1) contraction of granulation tissue, (2) by coverage with split-skin grafts, and (3) by coverage with full-thickness skin grafts. In all 3 types of wounds, myofibroblasts appeared early and reached a peak number at two weeks after wounding. At this time, 40 to 50 percent of the wound fibroblasts had myofibroblast characteristics. The granulating wounds contracted rapidly and completely, and had long persistence of myofibroblasts. Split-skin grafted wounds contracted less and had a more rapid decrease in myofibroblasts. The wounds covered with full thickness skin grafts had a minimum of contraction with a very rapid decrease in the number of myofibroblasts until by 4 weeks no myofibroblasts were present. Full-thickness skin grafts thus appeared to influence contracting wounds not by preventing the formation of myofibroblasts, but by speeding up completion of their life cycle.  相似文献   

8.
Early lethality of mice with complete deletion of the matrix metalloproteinase MMP14 emphasized the proteases’ pleiotropic functions. MMP14 deletion in adult dermal fibroblasts (MMP14Sf-/-) caused collagen type I accumulation and upregulation of MMP3 expression. To identify the compensatory role of MMP3, mice were generated with MMP3 deletion in addition to MMP14 loss in fibroblasts. These double deficient mice displayed a fibrotic phenotype in skin and tendons as detected in MMP14Sf-/- mice, but no additional obvious defects were detected. However, challenging the mice with full thickness excision wounds resulted in delayed closure of early wounds in the double deficient mice compared to wildtype and MMP14 single knockout controls. Over time wounds closed and epidermal integrity was restored. Interestingly, on day seven, post-wounding myofibroblast density was lower in the wounds of all knockout than in controls, they were higher on day 14. The delayed resolution of myofibroblasts from the granulation tissue is paralleled by reduced apoptosis of these cells, although proliferation of myofibroblasts is induced in the double deficient mice. Further analysis showed comparable TGFβ1 and TGFβR1 expression among all genotypes. In addition, in vitro, fibroblasts lacking MMP3 and MMP14 retained their ability to differentiate into myofibroblasts in response to TGFβ1 treatment and mechanical stress. However, in vivo, p-Smad2 was reduced in myofibroblasts at day 5 post-wounding, in double, but most significant in single knockout, indicating their involvement in TGFβ1 activation. Thus, although MMP3 does not compensate for the lack of fibroblast-MMP14 in tissue homeostasis, simultaneous deletion of both proteases in fibroblasts delays wound closure during skin repair. Notably, single and double deficiency of these proteases modulates myofibroblast formation and resolution in wounds.  相似文献   

9.
It is shown that the novel mitochondria-targeted antioxidant SkQ1, (10-(6′-plastoquinonyl) decyltriphenylphosphonium) stimulates healing of full-thickness dermal wounds in mice and rats. Treatment with nanomolar doses of SkQ1 in various formulations accelerated wound cleaning and suppressed neutrophil infiltration at the early (7 h) steps of inflammatory phase. SkQ1 stimulated formation of granulation tissue and increased the content of myofibroblasts in the beginning of regenerative phase of wound healing. Later this effect caused accumulation of collagen fibers. Local treatment with SkQ1 stimulated re-epithelization of the wound. Lifelong treatment of mice with SkQ1 supplemented with drinking water strongly stimulated skin wounds healing in old (28 months) animals. In an in vitro model of wound in human cell cultures, SkQ1 stimulated movement of epitheliocytes and fibroblasts into the “wound”. Myofibroblast differentiation of subcutaneous fibroblasts was stimulated by SkQ1. It is suggested that SkQ1 stimulates wound healing by suppression of the negative effects of oxidative stress in the wound and also by induction of differentiation. Restoration of regenerative processes in old animals is consistent with the “rejuvenation” effects of SkQ1, which prevents some gerontological diseases.  相似文献   

10.
Cigarette smoking has been suggested as a risk factor for several periodontal diseases. It has also been found that smokers respond less favorably than non-smokers to periodontal therapy. Previous work in our lab has shown that nicotine inhibits human gingival cell migration. Since myofibroblasts play an important role in wound closure, we asked if nicotine affects gingival wound healing process by regulating myofibroblast differentiation. Human gingival fibroblasts (HGFs) from two patients were cultured in 10% fetal bovine serum cell culture medium. Cells were pretreated with different doses of nicotine (0, 0.01, 0.1, and 1 mM) for 2 h, and then incubated with transforming growth factor beta (TGF-beta1) (0, 0.25, 0.5, and 1 ng/ml) with or without nicotine for 30 h. The expression level of alpha-smooth muscle actin (alpha-SMA), a specific marker for myofibroblasts, was analyzed by Western blots, immunocytochemistry, and real-time polymerase chain reaction (real-time PCR). Phosphorylated p38 mitogen-activated protein kinase (Phospho-p38 MAPK) activity was analyzed by Western blots. TGF-beta1 induced an increase of alpha-SMA protein and mRNA expression, while nicotine (1 mM) inhibited the TGF-beta1-induced expression of alpha-SMA but not beta-actin. Nicotine treatment down-regulated TGF-beta1-induced p38 MAPK phosphorylation. Our results demonstrated for the first time that nicotine inhibits myofibroblast differentiation in human gingival fibroblasts in vitro; supporting the hypothesis that delayed wound healing in smokers may be due to decreased wound contraction by myofibroblasts.  相似文献   

11.
The force generated in granulation tissue during wound contraction is thought to be cell mediated; however, it is unclear whether contractile forces are generated by fibroblast locomotion or contraction of myofibroblasts. To help clarify this question the force of this contraction can now be determined accurately in a human dermal fibroblast collagen lattice system using a novel instrument known as a Culture Force Monitor. Three distinct phases of contraction of such collagen gels could be identified over the first 24 hours. Most of the force generated by human dermal fibroblasts was produced during the first stage in parallel with cell attachment and associated changes in cell shape, and the appearance of cell processes. During this initial 24 hours no evidence could be found for the presence of myofibroblasts, but stereoscopic and electron microscopic analysis at a range of time points indicated that migratory fibroblasts were present in the system. Comparison of the contraction profiles of cells extracted from other tissues (tendon and articular cartilage), and extracted by different means from the same tissue specimen, indicated that different populations of fibroblasts can be distinguished on the basis of their pattern of contractions. It would seem that most of the force generated in this model is a result of fibroblast attachment and movement within the collagen lattice. Furthermore, different groups of fibroblasts, even within the same tissue, may vary in their contraction (hence locomotory) activity. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The microscopic, electron microscopic and immunohistochemical observation of biopsy specimens taken at an early stage, at close and regular intervals (every 4 hours), from open skin wounds created in the pig and the monkey, together with quantitative analysis of the various cell types in the granulation tissue, supports the conception that the activated fibrocyte (fibroblast) originates from the fibrocyte of the wound edges and thus completes some earlier experimental studies. We describe here the various stages of the differentiation of the wound edge fibrocyte into an activated fibrocyte and its proliferation and migration from the edges to the site of the wound. This does not exclude the possibility that local mesenchymal cells take part in the formation of activated fibrocytes. The activated fibrocyte build the collagen of the granulation tissue and then remodel and ensure wound contraction by becoming fibroclasts and myofibroblasts. This article defines the signification of the terms fibrocyte, activated fibrocyte, fibroblast and activated fibroblast.  相似文献   

13.
14.
During the healing of an experimental skin wound, epidermal cells and granulation tissue fibroblasts (myofibroblasts) develop an extensive cytoplasmic contactile apparatus. Concurrently, the proportion of epidermal cell surface occupied by gap junctions increases when compared to normal skin, and newly formed gap junctions appear between myofibroblasts; this suggests that epidermal cell migration and granulation tissue contraction are synchronized phenomena.  相似文献   

15.
Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.  相似文献   

16.
Wound contraction in soft tissue has been attributed to the activity of contractile fibroblasts containing actin microfilaments. Immunochemical staining at the electron microscopic level was used to demonstrate the presence of such cells in healing wounds from skin and oral mucosa. Biopsies of granulation tissue from 10 and 16 day old excision wounds in beagle palate mucoperiosteum and skin were fixed and 10 micrometer sections were treated with antiactin serum, peroxidase-anti peroxidase (PAP) and then incubated to reveal the localization of actin. Controls were prepared using non-immune serum or preabsorbed immune serum. Thin sections examined with the electron microscope revealed the presence of PAP particles associated with microfilament bundles beneath the plasma membrane and in processes of fibroblasts. Reaction was also associated with micropinocytotic vesicles at the cell surface. More reactive cells were seen in 16 day than in 10 day old wounds and there were greater numbers of these cells in skin than in oral mucoperiosteum. The results indicate that actin containing cells with the ultrastructural characteristics of contractile fibroblasts (myofibroblasts) are present in the granulation tissue of healing skin and oral mucosal wounds. Such cells may be responsible for the wound contraction observed clinically in the healing palatal mucoperiosteum.  相似文献   

17.
Skin fibrosis is characterized by activated fibroblasts and an altered architecture of the extracellular matrix. Excessive deposition of extracellular matrix proteins and altered cytokine levels in the dermal collagen matrix are common to several pathological situations such as localized scleroderma and systemic sclerosis, keloids, dermatosclerosis associated with venous ulcers and the fibroproliferative tissue surrounding invasively growing tumors. Which factors contribute to altered organization of dermal collagen matrix in skin fibrosis is not well understood. We recently demonstrated that cartilage oligomeric matrix protein (COMP) functions as organizer of the dermal collagen I network in healthy human skin (Agarwal et al., 2012). Here we show that COMP deposition is enhanced in the dermis in various fibrotic conditions. COMP levels were significantly increased in fibrotic lesions derived from patients with localized scleroderma, in wound tissue and exudates of patients with venous leg ulcers and in the fibrotic stroma of biopsies from patients with basal cell carcinoma. We postulate enhanced deposition of COMP as one of the common factors altering the supramolecular architecture of collagen matrix in fibrotic skin pathologies. Interestingly, COMP remained nearly undetectable in normally healing wounds where myofibroblasts transiently accumulate in the granulation tissue. We conclude that COMP expression is restricted to a fibroblast differentiation state not identical to myofibroblasts which is induced by TGFβ and biomechanical forces.  相似文献   

18.
Granulation tissue fibroblasts (myofibroblasts) develop several ultrastructural and biochemical features of smooth muscle (SM) cells, including the presence of microfilament bundles and the expression of alpha-SM actin, the actin isoform typical of vascular SM cells. Myofibroblasts have been proposed to play a role in wound contraction and in retractile phenomena observed during fibrotic diseases. We show here that the subcutaneous administration of transforming growth factor- beta 1 (TGF beta 1) to rats results in the formation of a granulation tissue in which alpha-SM actin expressing myofibroblasts are particularly abundant. Other cytokines and growth factors, such as platelet-derived growth factor and tumor necrosis factor-alpha, despite their profibrotic activity, do not induce alpha-SM actin in myofibroblasts. In situ hybridization with an alpha-SM actin probe shows a high level of alpha-SM actin mRNA expression in myofibroblasts of TGF beta 1-induced granulation tissue. Moreover, TGF beta 1 induces alpha-SM actin protein and mRNA expression in growing and quiescent cultured fibroblasts and preincubation of culture medium containing whole blood serum with neutralizing antibodies to TGF beta 1 results in a decrease of alpha-SM actin expression by fibroblasts in replicative and non-replicative conditions. These results suggest that TGF beta 1 plays an important role in myofibroblast differentiation during wound healing and fibrocontractive diseases by regulating the expression of alpha-SM actin in these cells.  相似文献   

19.
Exogenous glucocorticoids are known to inhibit wound repair, but the roles and mechanisms of action of endogenous glucocorticoids during the healing process are as yet unknown. Therefore, we wounded mice expressing a DNA-binding-defective mutant version of the glucocorticoid receptor (GRdim mice) and also analysed fibroblasts from these animals in vitro. We found a remarkably enlarged granulation tissue with a high fibroblast density in GRdim mice. This difference is likely to result from an increased migratory and proliferative capacity of GRdim fibroblasts and from elevated expression levels of soluble factors involved in granulation tissue formation in wounds of GRdim mice. In spite of the larger granulation tissue seen in early wounds, late wounds appeared normal, most likely due to an enhanced ability of GRdim fibroblasts to contract collagen. These results demonstrate an as yet unidentified role of endogenous glucocorticoids in the regulation of wound repair.  相似文献   

20.
The effect of myofibroblast on contracture of hypertrophic scar   总被引:14,自引:0,他引:14  
Wound contraction in humans has both positive and negative effects. It is beneficial to wound healing by narrowing the wound margins, but the formation of undesirable scar contracture brings cosmetic and even functional problems. The entire mechanism of wound healing and scar contracture is not clear yet, but it is at least considered that both the fibroblasts and the myofibroblasts are responsible for contraction in healing wounds. The myofibroblast is a cell that possesses all the morphologic and biochemical characteristics of both a fibroblast and a smooth muscle cell. Normally, the myofibroblasts appear in the initial wound healing processes and generate contractile forces to pull both edges of an open wound until it disappears by apoptosis. But as an altered regulation of myofibroblast disappearance, they remain in the dermis and continuously contract the scar, eventually causing scar contracture. In this research, to compare and directly evaluate the influence on scar contracture of the myofibroblast versus the fibroblast, dermal tissues were taken from 10 patients who had highly contracted hypertrophic scars. The myofibroblasts were isolated and concentrated from the fibroblasts using the magnetic activating cell-sorting column to obtain the myofibroblast group, which contained about 28 to 41 percent of the myofibroblasts, and the fibroblast group, which contained less than 0.9 percent of the myofibroblasts. Each group was cultured in the fibroblast-populated collagen lattice for 13 days, and the contraction of the collagen gel was measured every other day. In addition, they were selectively treated with tranilast [N-(3',4'-dimethoxycinnamoyl) anthranilic acid] to evaluate the influence on the contraction of the collagen gel lattice. During the culture, the myofibroblast group, compared with the fibroblast group, showed statistically significant contraction of the collagen gel lattice day by day, except on the first day, and only the myofibroblast group was affected by tranilast treatment, showing significant inhibition of gel contraction. By utilizing an in vitro model, the authors have demonstrated that myofibroblasts play a more important role in the contracture of the hypertrophic scar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号