首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Although mechanisms of bovine viral diarrhea virus (BVDV) entry into bovine cells have been elucidated, little is known concerning pestivirus entry and receptor usage in ovine cells. In this study, we determined the entry mechanisms of BVDV-1 and BVDV-2 in sheep fetal thymus cells. Both BVDV-1 and BVDV-2 infections were inhibited completely by chlorpromazine, β-methyl cyclodextrin, sucrose, bafilomycin A1, chloroquine, and ammonium chloride. Simultaneous presence of reducing agent and low pH resulted in marked loss of BVDV infectivity. Moreover, BVDV was unable to fuse with ovine cell membrane by the presence of reducing agent or low pH alone, while combination of both led to fusion at low efficiency. Furthermore, sheep fetal thymus cells acutely infected with BVDV-1 or BVDV-2 were found protected from heterologous BVDV infection. Taken together, our results showed for the first time that entry of both BVDV-1 and BVDV-2 into ovine cells occurred through clathrin-dependent endocytosis, endosomal acidification, and low pH-dependent fusion following an activation step, besides suggesting the involvement of a common ovine cellular receptor during attachment and entry.  相似文献   

2.
Among several proposed cellular receptors for bovine viral diarrhea virus (BVDV), the low-density lipoprotein (LDL) receptor is of special interest because it is also considered a receptor for the related hepatitis C virus. It has been reported that an anti-LDL receptor monoclonal antibody blocked the infection of bovine cells by BVDV and that the resistance of bovine CRIB cells (cells resistant to infection with BVDV) (E. F. Flores and R. O. Donis, Virology 208:565-575, 1995) to BVDV infection was due to a lack of the LDL receptor (V. Agnello et al., Proc. Natl. Acad. Sci. USA 96:12766-12771, 1999). In connection with our studies on BVDV entry, we reevaluated the putative role of the LDL receptor as a cellular receptor for BVDV. It was first clearly demonstrated that neither of two monoclonal antibodies against the LDL receptor inhibited BVDV infection of two bovine cell lines. Furthermore, the LDL receptor was detected on the surface of CRIB cells. The functionality of the LDL receptor on CRIB cells was demonstrated by the internalization of fluorescently labeled LDL. In conclusion, at present no experimental evidence supports an involvement of the LDL receptor in BVDV invasion.  相似文献   

3.
The route of internalization of the pestivirus bovine viral diarrhea virus (BVDV) was studied by using different chemical and biophysical inhibitors of endocytosis. Expression of the dominant-negative mutant Dyn(K44A) of the GTPase dynamin in MDBK cells, as well as the treatment of the cells with chlorpromazine and beta-methyl-cyclodextrin inhibited BVDV entry. BVDV infection was also abolished by potassium (K+) depletion, hyperosmolarity, and different inhibitors of endosomal acidification. We conclude that BVDV likely enters the cell by clathrin-dependent endocytosis and that acidification initiates fusion with the endosomal membrane. Further studies revealed that BVDV was unable to undergo "fusion from without" at low pH. The finding that low pH is not sufficient to force adsorbed BVDV into fusion with the plasma membrane is compatible with the remarkable resistance of pestiviruses to inactivation by low pH. The importance of the abundant intra- and intermolecular disulfide bonds in BVDV glycoproteins for virus stability was studied by the use of reducing agents. The combination of dithiothreitol and acidic pH led to partial inactivation of BVDV and allowed fusion from without at low efficiency. Evidence is provided here that acid-resistant BVDV is destabilized during endocytosis to become fusogenic at an endosomal acidic pH. We suggest that destabilization of the virion occurs by breakage of disulfide bonds in the glycoproteins by an unknown mechanism.  相似文献   

4.
For many viruses, primary infection has been shown to prevent superinfection by a homologous second virus. In this study, we investigated superinfection exclusion of bovine viral diarrhea virus (BVDV), a positive-sense RNA pestivirus. Cells acutely infected with BVDV were protected from superinfection by homologous BVDV but not with heterologous vesicular stomatitis virus. Superinfection exclusion was established within 30 to 60 min but was lost upon passaging of persistently infected cells. Superinfecting BVDV failed to deliver a translatable genome into acutely infected cells, indicating a block in viral entry. Deletion of structural protein E2 from primary infecting BVDV abolished this exclusion. Bypassing the entry block by RNA transfection revealed a second block at the level of replication but not translation. This exclusion did not require structural protein expression and was inversely correlated with the level of primary BVDV RNA replication. These findings suggest dual mechanisms of pestivirus superinfection exclusion, one at the level of viral entry that requires viral glycoprotein E2 and a second at the level of viral RNA replication.  相似文献   

5.
Bovine viral diarrhea virus (BVDV) is a positive-strand RNA virus and a member of the genus Pestivirus in the family Flaviviridae. To identify and characterize essential factors required for BVDV replication, a library expressing random fragments of the BVDV genome was screened for sequences that act as transdominant inhibitors of viral replication by conferring resistance to cytopathic BVDV-induced cell death. We isolated a BVDV-nonpermissive MDBK cell clone that harbored a 1.2-kb insertion spanning the carboxy terminus of the envelope glycoprotein 1 (E1), the envelope glycoprotein E2, and the amino terminus of p7. Confirming the resistance phenotype conferred by this library clone, naïve MDBK cells expressing this fragment were found to be 100- to 1,000-fold less permissive to both cytopathic and noncytopathic BVDV infection compared to parental MDBK cells, although these cells remained fully permissive to vesicular stomatitis virus. This restriction could be overcome by electroporation of BVDV RNA, indicating a block at one or more steps in viral entry prior to translation of the viral RNA. We determined that the E2 ectodomain was responsible for the inhibition to BVDV entry and that this block occurred downstream from BVDV interaction with the cellular receptor CD46 and virus binding, suggesting interference with a yet-unidentified BVDV entry factor.  相似文献   

6.
The pestivirus bovine viral diarrhea virus (BVDV) was shown to bind to the bovine CD46 molecule, which subsequently promotes entry of the virus. To assess the receptor usage of BVDV type 1 (BVDV-1) and BVDV-2, 30 BVDV isolates including clinical samples were assayed for their sensitivity to anti-CD46 antibodies. With a single exception the infectivity of all tested strains of BVDV-1 and BVDV-2 was inhibited by anti-CD46 antibodies, which indicates the general usage of CD46 as a BVDV receptor. Molecular analysis of the interaction between CD46 and the BVD virion was performed by mapping the virus binding site on the CD46 molecule. Single complement control protein modules (CCPs) within the bovine CD46 were either deleted or replaced by analogous CCPs of porcine CD46, which does not bind BVDV. While the epitopes recognized by anti-CD46 monoclonal antibodies which block BVDV infection were attributed to CCP1 and CCP2, in functional assays only CCP1 turned out to be essential for BVDV binding and infection. Within CCP1 two short peptides on antiparallel beta strands were identified as crucial for the binding of BVDV. Exchanges of these two peptide sequences were sufficient for a loss of function in bovine CD46 as well as a gain of function in porcine CD46. Determination of the size constraints of CD46 revealed that a minimum length of four CCPs is essential for receptor function. An increase of the distance between the virus binding domain and the plasma membrane by insertion of one to six CCPs of bovine C4 binding protein exhibited only a minor influence on susceptibility to BVDV.  相似文献   

7.
Bovine viral diarrhoea virus (BVDV) contributes significantly to health-related economic losses in the beef and dairy industry. Antibodies of maternal origin can be protective against BVDV infection, however, calves with low titres of maternal antibody or that do not receive colostrum may be at risk for acute BVDV infection. Interference by high titres of maternal antibodies prevents the development of an antibody response following vaccination with either a killed or attenuated BVDV vaccine. However, the T cell mediated immune response to BVDV may be generated in the absence of a detectable serum neutralizing antibody response. Two trials were conducted to evaluate the potential to elicit T cell mediated immune responses to BVDV in calves with circulating maternal antibody to BVDV. In the first trial, calves with high levels of circulating maternal antibody to BVDV 1 and BVDV 2 were experimentally infected with BVDV 2 (strain 1373) at two to five weeks of age. The T-cell mediated immune responses of the experimentally infected calves and non-infected calves were monitored monthly until circulating maternal antibody was no longer detectable in either treatment group. Calves experimentally infected with BVDV developed BVDV specific CD4(+), CD8(+), and delta T cell responses while high levels of maternal antibody were circulating. A second challenge with BVDV 2 (strain 1373) was performed in the experimentally infected and control calves once maternal antibody could no longer be detected. Previous exposure to BVDV in the presence of maternal antibody protected calves from clinical signs of acute BVDV infection compared to the control calves. In the second trial, three groups of calves with circulating maternal antibody to BVDV were given either a modified live vaccine (MLV) containing BVDV 1 and BVDV 2, a killed vaccine containing BVDV 1 and BVDV 2, or no vaccine, at seven weeks of age. Serum neutralizing antibody levels and antigen specific T cell responses were monitored for 14 weeks following vaccination. Calves vaccinated with MLV BVDV developed BVDV 1 and BVDV 2 specific CD4(+)T cell responses, and BVDV 2 specific gammadelta T cell responses, in the presence of maternal antibody. Vaccination with killed BVDV did not result in the generation of measurable antigen specific T cell immune responses. In this trial, a second vaccination was performed at 14 weeks to determine whether an anamnestic antibody response could be generated when calves were vaccinated in the presence of maternal antibody. Calves vaccinated with either a MLV or killed BVDV vaccine while they had maternal antibody developed an anamnestic antibody response to BVDV 2 upon subsequent vaccination. The results of these trials indicate that vaccinating young calves against BVD while maternal antibody is present may generate BVDV specific memory T and B cells. The data also demonstrated that seronegative calves with memory T and B cells specific for BVDV may be immune to challenge with virulent BVDV.  相似文献   

8.
9.
We describe the development of a selectable, bi-cistronic subgenomic replicon for bovine viral diarrhea virus (BVDV) in Huh-7 cells, similar to that established for hepatitis C virus (HCV). The selection marker and reporter (Luc-Ubi-Neo) in the BVDV replicon was fused with the amino-terminal protease N(pro), and expression of the nonstructural proteins (NS3 to NS5B) was driven by an encephalomyocarditis virus internal ribosome entry site. This BVDV replicon allows us to compare RNA replication of these two related viruses in a similar cellular background and to identify antiviral molecules specific for HCV RNA replication. The BVDV replicon showed similar sensitivity as the HCV replicon to interferons (alpha, beta, and gamma) and 2'-beta-C-methyl ribonucleoside inhibitors. Known nonnucleoside inhibitor molecules specific for either HCV or BVDV can be easily distinguished by using the parallel replicon systems. The HCV replicon has been shown to block, via the NS3/4A serine protease, Sendai virus-induced activation of interferon regulatory factor 3 (IRF-3), a key antiviral signaling molecule. Similar suppression of IRF-3-mediated responses was also observed with the Huh-7-BVDV replicon but was independent of NS3/4A protease activity. Instead, the amino-terminal cysteine protease N(pro) of BVDV appears to be, at least partly, responsible for suppressing IRF-3 activation induced by Sendai virus infection. This result suggests that different viruses, including those closely related, may have developed unique mechanisms for evading host antiviral responses. The parallel BVDV and HCV replicon systems provide robust counterscreens to distinguish viral specificity of small-molecule inhibitors of viral replication and to study the interactions of the viral replication machinery with the host cell innate immune system.  相似文献   

10.
A prospective field study in heifers from birth to first breeding was undertaken on two commercial dairies to assess the effect of bovine viral diarrhea virus (BVDV) congenital and post-natal infection (PNI) on fertility. A high BVDV Type 2 antibody titer (1:4096) at 10 months of age was associated with 32 more days to conceive, compared with a low titer (1:128). Conversely, infection with BVDV by 5-6 months of age and high BVDV Type 2 titers 1 month before conception or breeding was associated with improved fertility. Heifers with evidence of congenital BVDV infection had lower fertility than non-infected heifers (15-42 days longer time-to-first AI), which depended on BVDV Type 2 titers at 10 months of age. Neospora caninum infection was associated with additional services per conception (SPC) and Leptospira interrogans infection was associated with a delay in the time-to-first breeding. It appears that under field conditions, the effect of subclinical BVDV infection on subsequent heifer fertility may be due to a complex of interrelationships among multiple BVDV infections that depend on the type and timing of infection relative to reproductive development and events.  相似文献   

11.
Compound-1453 was identified and characterized as a specific inhibitor of bovine viral diarrhea virus (BVDV). The concentration of compound-1453 which results in 50% protection from virus-induced cytopathic effect is approximately 2.2 microM, with a therapeutic index of 60, and it is not active against a panel of RNA and DNA viruses. A time-of-addition experiment suggested that compound-1453 targets a stage of the viral life cycle after viral entry. To determine the target of compound-1453, resistant virus was generated. Resistant variants grew efficiently in the presence or absence of 33 micro M compound-1453 and exhibited replication efficiency in the presence of compound-1453 approximately 1,000-fold higher than that of the wild-type (wt) virus. Functional mapping and sequence analysis of resistant cDNAs revealed a single amino acid substitution (Glu to Gly) at residue 291 in the NS5B polymerase in all eight independently generated cDNA clones. Recombinant virus containing this single mutation retained the resistance phenotype and a replication efficiency similar to that of the original isolated resistant virus. Since compound-1453 did not inhibit BVDV polymerase activity in vitro (50% inhibitory concentration > 300 microM), we developed a membrane-based assay that consisted of a BVDV RNA replicase complex isolated from virus-infected cells. Compound-1453 inhibited the activity of the wt, but not the drug-resistant, replicase in the membrane assay at concentrations similar to those observed in the viral infection assay. This work presents a novel inhibitor of a viral RNA-dependent RNA replicase.  相似文献   

12.
13.
Bovine viral diarrhea virus infection induces autophagy in MDBK cells   总被引:1,自引:0,他引:1  
Bovine viral diarrhea virus (BVDV) is an enveloped, positive-sense, single-stranded RNA virus that belongs to the genus Pestivirus (Flaviviridae). The signaling pathways and levels of signaling molecules are altered in Madin-Darby Bovine Kidney (MDBK) cells infected with BVDV. Autophagy is a conservative biological degradation pathway that mainly eliminates and degrades damaged or superfluous organelles and macromolecular complexes for intracellular recycling in eukaryotic cells. Autophagy can also be induced as an effective response to maintain cellular homeostasis in response to different stresses, such as nutrient or growth factor deprivation, hypoxia, reactive oxygen species exposure and pathogen infection. However, the effects of BVDV infection on autophagy inMDBK cells remain unclear. Therefore, we performed an analysis of autophagic activity after BVDV NADL infection using real-time PCR, electron microscopy, laser confocal microscopy, and Western blotting analysis. The results demonstrated that BVDV NADL infection increased autophagic activity and significantly elevated the expression levels of the autophagy-related genes Beclin1 and ATG14 inMDBK cells. However, the knockdown of Beclin1 and ATG14 by RNA interference (RNAi) did not affect BVDV NADL infection-related autophagic activity. These findings provided a novel perspective to elaborate the effects of viral infection on the host cells.  相似文献   

14.
Acid dependent infection of Hela and Vero cells by BTV-10 occurs from within early-endosomes following virus uptake by clathrin-mediated endocytosis (Forzan et al., 2007: J Virol 81: 4819–4827). Here we report that BTV-1 infection of BHK cells is also dependent on a low endosomal pH; however, virus entry and infection were not inhibited by dominant-negative mutants of Eps15, AP180 or the ‘aa’ splice variant of dynamin-2, which were shown to inhibit clathrin-mediated endocytosis. In addition, infection was not inhibited by depletion of cellular cholesterol, which suggests that virus entry is not mediated by a lipid-raft dependent process such as caveolae-mediated endocytosis. Although virus entry and infection were not inhibited by the dominant-negative dynamin-2 mutant, entry was inhibited by the general dynamin inhibitor, dynasore, indicating that virus entry is dynamin dependent. During entry, BTV-1 co-localised with LAMP-1 but not with transferrin, suggesting that virus is delivered to late-endosomal compartments without first passing through early-endosomes. BTV-1 entry and infection were inhibited by EIPA and cytochalasin-D, known macropinocytosis inhibitors, and during entry virus co-localised with dextran, a known marker for macropinocytosis/fluid-phase uptake. Our results extend earlier observations with BTV-10, and show that BTV-1 can infect BHK cells via an entry mechanism that is clathrin and cholesterol-independent, but requires dynamin, and shares certain characteristics in common with macropinocytosis.  相似文献   

15.
Phosphatidylinositol kinases (PI kinases) play an important role in the life cycle of several viruses after infection. Using gene knockdown technology, we demonstrate that phosphatidylinositol 4-kinase IIIβ (PI4KB) is required for cellular entry by pseudoviruses bearing the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike protein and that the cell entry mediated by SARS-CoV spike protein is strongly inhibited by knockdown of PI4KB. Consistent with this observation, pharmacological inhibitors of PI4KB blocked entry of SARS pseudovirions. Further research suggested that PI4P plays an essential role in SARS-CoV spike-mediated entry, which is regulated by the PI4P lipid microenvironment. We further demonstrate that PI4KB does not affect virus entry at the SARS-CoV S-ACE2 binding interface or at the stage of virus internalization but rather at or before virus fusion. Taken together, these results indicate a new function for PI4KB and suggest a new drug target for preventing SARS-CoV infection.  相似文献   

16.
Bovine viral diarrhea virus can maintain prolonged infections within immunoprivileged sites after an otherwise transient infection of a cow, calf, or bull. Various sites provide unique niches for viral replication which are not susceptible to the complete surveillance commonly provided by the bovine immune system. Evidence indicates that pestiviral infections may be significantly prolonged within ovarian tissue, testicular tissue, central nervous system tissue, and circulating white blood cells. Within avascular portions of the ovarian follicle, granulosa cells and oocytes may maintain BVDV infections which cannot be attacked by cell-mediated immunity. When infections occur within seminiferous tubules in testicular tissue, similar protection from the immune system is provided for BVDV by the blood-testes barrier. Likewise, the blood-brain barrier has been hypothesized to provide protection for BVDV in a case involving neuropathology associated with immunohistochemical detection of BVDV. Furthermore, infections of circulating white blood cells may perturb their stimulation of an adaptive immune response and facilitate chronic infection of these cells. Thus, BVDV has demonstrated an ability to maintain prolonged viral infections in immunoprivileged sites within its natural host. The role of chronic infections in maintaining and disseminating BVDV within the cattle population and heterologous host species remains to be fully understood.  相似文献   

17.
Pestiviruses belong to the family Flaviviridae, and their genome is a single-stranded RNA of positive polarity encoding one large polyprotein which is further processed into mature proteins. Noncytopathogenic (noncp) strains of the pestivirus bovine viral diarrhea virus (BVDV) can establish persistent infection. In persistently infected animals, noncp BVDVs occasionally acquire mutations in viral nonstructural protein 2 (NS2) that give rise to cytopathogenic (cp) BVDV variants, and, eventually, lead to the onset of lethal disease. A molecular marker of cp BVDV infection is a high-level expression of the replicative NS3 protease/helicase that together with NS2 is derived from NS2-3. Here, we present evidence for NS2-3 autoprocessing by a newly identified cysteine protease in NS2 that is distantly related to the NS2-3 autoprotease of hepatitis C and GB viruses. The vital role of this autoprotease in BVDV infection was established, implying an essential function for NS3 in pestiviral RNA replication which cannot be supplied by its NS2-3 precursor. Accordingly, and contrary to a current paradigm, we detected almost complete cleavage of NS2-3 in noncp BVDV at early hours of infection. At 6 to 9 h postinfection, NS2-3 autoprocessing diminished to barely detectable levels for noncp BVDV but decreased only moderately for cp BVDV. Viral RNA synthesis rates strictly correlated with different NS3 levels in noncp and cp BVDV-infected cells, implicating the NS2 autoprotease in RNA replication control. The biotype-specific modulation of NS2-3 autoprocessing indicates a crucial role of the NS2 autoprotease in the pathogenicity of BVDV.  相似文献   

18.
Bovine viral diarrhea virus (BVDV) infection in cattle is responsible for mucosal disease; an invariably fatal syndrome characterized by the recovery of two BVDV strains: cytopathic (cp) or noncytopathic (ncp). To understand the cellular responses to cp BVDV infection, we carried out differential display-polymerase chain reaction (DD-PCR) analysis of gene expression in infected cells. Altered expression of 14 genes involved in several functions was observed in cells infected with cp BVDV: (1) immune regulation, such as CD46, FKBP-12, and osteopontin (OPN); (2) apoptosis-related cysteine proteases like calpain; (3) signaling plasma membrane proteins such as integrin beta1, and prion protein; and (4) unknown function genes. Northern blot analysis of the expression of these genes in ncp BVDV infected cells revealed that while the expression of some genes was affected as in cp BVDV infected cells, others show a clearly contrary change. We postulate that a cause-effect relationship may exist between the differential gene expression alterations that characterize cp and ncp BVDV infections and the unique diseases associated with each BVDV biotype.  相似文献   

19.
Hepatitis C virus entry depends on clathrin-mediated endocytosis   总被引:10,自引:0,他引:10       下载免费PDF全文
Due to difficulties in cell culture propagation, the mechanisms of hepatitis C virus (HCV) entry are poorly understood. Here, postbinding cellular mechanisms of HCV entry were studied using both retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the HCV clone JFH-1 propagated in cell culture (HCVcc). HCVpp entry was measured by quantitative real-time PCR after 3 h of contact with target cells, and HCVcc infection was quantified by immunoblot analysis and immunofluorescence detection of HCV proteins expressed in infected cells. The functional role of clathrin-mediated endocytosis in HCV entry was assessed by small interfering RNA-mediated clathrin heavy chain depletion and with chlorpromazine, an inhibitor of clathrin-coated pit formation at the plasma membrane. In both conditions, HCVpp entry and HCVcc infection were inhibited. HCVcc infection was also inhibited by pretreating target cells with bafilomycin A1 or chloroquine, two drugs known to interfere with endosome acidification. These data indicate that HCV enters target cells by clathrin-mediated endocytosis, followed by a fusion step from within an acidic endosomal compartment.  相似文献   

20.
The cellular events involved in precipitation of the clinically fatal outcome of an infection with bovine viral diarrhoea virus (BVDV) remain unresolved, though it is now known that this course of the infection, Mucosal Disease (MD), only occurs in calves persistently infected with non-cytopathic BVDV. In studies aimed at elucidating the pathogenesis of MD, the distribution of BVDV antigens and infectious virus in tissues of persistently infected, clinically normal calves was investigated. Virus antigen was detected in most tissues, in epithelial and immune cells. No signs of an inflammatory response were detected and cytopathological changes were subtle or absent. The infection may nevertheless create a cell-environment which will enhance replication of cytopathic virus. Variations in the clinical, pathomorphologies and virological appearance of MD-cases may depend on both the host-reactions, including virus-induced immunopathology, and the virus-strain combinations in a putative mixed infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号