首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have developed a procedure for determining the rates of mitotic recombination of an interrupted duplication created by integration of transforming plasmid sequences at the benA, beta-tubulin, locus of Aspergillus nidulans. Transformation of a strain carrying a benomyl-resistant benA allele with plasmid AIpGM4, which carries the wild-type benA allele and the pyr4 (orotidine-5-phosphate decarboxylase) gene of Neurospora crassa, creates an interrupted duplication with plasmid sequences flanked by two benA alleles, one wild type and one benomyl resdistant. Such transformants will not grow in the presence of high levels of benomyl. Mitotic recombination causes the loss of the wild-type benA allele or conversion of the wild-type to the mutant allele resulting in nuclei carrying only the benomylresistant allele. Conidia containing such nuclei can be selected on media with high benomyl allowing easy quantitation of mitotic recombination. We found that the rate of recombination giving rise to benomyl-resistant conidia was 4.6×10-4. Reciprocal recombination leading to benomyl-resistant conidia lacking plasmid sequences occurred at a rate of 2.0×10-4 and gene conversion leading to benomylresistant conidia occurred at a rate of 2.6×10-4. We selected for reciprocal recombination leading to loss of pyr4 sequences on 5-fluoro-orotic acid and used this selection for two-step gene replacement of a mutant benA allele with the wild-type allele.  相似文献   

2.
A beta-tubulin gene from a UV-irradiated benomyl-resistant mutant of Fusarium moniliforme was isolated, cloned, and sequenced. The gene encodes a 446-amino-acid polypeptide with homology to other fungal beta-tubulins. RNA blot analysis showed expression of the gene during vegetative growth and conidial germination but no expression during conidiation. A point mutation, which likely confers benomyl resistance, has been identified in the cloned gene; this mutation results in a single amino acid substitution of asparagine for tyrosine at position 50. Expression of benomyl resistance in the mutant was also cold sensitive. Sexual crosses betweeen the mutant and a wild-type strain indicated cosegregation of benomyl resistance and cold sensitivity.  相似文献   

3.
Summary We have isolated large numbers of conditionally lethal -tubulin mutations to provide raw material for analyzing the structure and function of tubulin and of microtubules. We have isolated such mutations as intragenic suppressors of benA33, a heat-sensitive (hs-) -tubulin mutation of Aspergillus nidulans. Among over 2,600 revertants isolated, 126 were cold-sensitive (cs-). In 41 of 78 cs- revertants analyzed, cold sensitivity and reversion from hs- to hs+ were due to mutations linked to benA33. In three cases reversion was due to mutations closely linked to benA33 but cold sensitivity was due to a coincidental mutation unlinked to benA33. In the remaining 34 cases reversion was due to mutations unlinked to benA33. Thirty-three of the revertants in which cold sensitivity and reversion were linked to benA33 were sufficiently cold-sensitive to allow us to select for rare recombinants between benA33 and putative suppressors in a revertant x wild-type (wt) cross. We found only one recombinant among 1,000 or more viable progeny from crosses of each of these revertants with a wt strain. Reversion is thus due to a back mutation or very closely linked suppressor in each case. We have analyzed 17 of these 33 revertants with greater precision and have found that, in each case, reversion is due to a suppressor mutation that maps to the right of benA33. The recombination frequencies between benA33 and the suppressors are very low (less than 1.2×10-4) in all cases. Five of these 33 revertants have been examined microscopically and in each of them nuclear division and nuclear migration are inhibited at a restrictive temperature. We conclude that at least some and perhaps all of these revertants carry intragenic suppressors of benA33 that, in combination with benA33, cause cold sensitivity by inhibiting the functioning of microtubules at low temperatures. Of the 17 suppressors mapped, 11 map to two clusters. These clusters are likely to define regions particularly important to the functioning of the -tubulin molecule.  相似文献   

4.
Identification of a gene for beta-tubulin in Aspergillus nidulans.   总被引:50,自引:0,他引:50  
G Sheir-Neiss  M H Lai  N R Morris 《Cell》1978,15(2):639-647
The tubulins of Aspergillus nidulans have been characterized in wild-type and ben A, B and C benomyl-resistant strains by two-dimensional gel electrophoresis, co-polymerization with porcine brain tubulin and peptide mapping. Four α-tubulins and at least four β-tubulins were resolved by two-dimensional gel electrophoresis of wild-type proteins. Eighteen of 26 benA mutants studied had electrophoretically abnormal β-tubulins. In these strains, one or more of the β-tubulins had either an altered isoelectric point or an altered electrophoretic mobility in the SDS gel dimension, or was diminished in amount. The a-tubulins were normal. Two-dimensional gels of protein extracts of a ben A/wild-type diploid strain demonstrated co-expression of the wild-type β-tubulins with the variant ben A tubulin. This experiment rules out post-translational modification as the source of the β-tubulin abnormalities in the benA mutants. We therefore conclude that benA must be a structural gene for β-tubulin. Due to the variety of abnormalities affecting β-tubulins in ben A mutants, and the absence of abnormalities affecting α-tubulins in any of the benomyl-resistant mutants, we also believe that the benomyl binding site must be located on the β-subunit of the tubulin dimer. The benA mutants of A. nidulans promise to be useful not only for characterizing the biochemical determinants of the benomyl binding site of tubulin but also for understanding the relationship between tubulin structure and function.  相似文献   

5.
6.
7.
We have cloned two different beta-tubulin sequences from the filamentous fungus Aspergillus nidulans. Each was used in the construction of transforming plasmids that carry the pyr4 gene of Neurospora crassa. We used these plasmids to transform a pyrG-strain of Aspergillus to uridine prototrophy. Both plasmids were shown to integrate site specifically into the homologous chromosomal sequences. We then used transformant strains in genetic crosses to demonstrate that one of the cloned beta-tubulin sequences was the benA beta-tubulin gene, which codes for the beta 1-and beta 2-tubulins. The other cloned beta-tubulin sequence was shown to be the structural gene for beta 3-tubulin by gene disruption and to participate in conidial development. This is the first report of a gene disruption by site specific, integrative recombination in Aspergillus nidulans.  相似文献   

8.
9.
Arginine and methionine transport by Aspergillus nidulans mycelium was investigated. A single uptake system is responsible for the transport of arginine, lysine and ornithine. Transport is energy-dependent and specific for these basic amino acids. The Km value for arginine is 1 X 10(-5) M, and Vmax is 2-8 nmol/mg dry wt/min; Km for lysine is 8 X 10(-6) M; Kt for lysine as inhibitor of arginine uptake is 12 muM, and Ki for ornithine is mM. On minimal medium, methionine is transported with a Km of 0-I mM and Vmax about I nmol/mg dry wt/min; transport is inhibited by azide. Neutral amnio acids such as serine, phenylalanine and leucine are probably transported by the same system, as indicated by their inhibition of methionine uptake and the existence of a mutant specifically impaired in their transport. The recessive mutant nap3, unable to transport neutral amino acids, was isolated as resistant to selenomethionine and p-fluorophenylanine. This mutant has unchanged transport of methionine by general and specific sulphur-regulated permeases.  相似文献   

10.
AIMS: To determine the pattern and the genetic basis of resistance to terbinafine, a drug extensively used for the treatment of fungal infections in humans. METHODS AND RESULTS: Four resistant mutants from Aspergillus nidulans isolated after irradiation with ultraviolet light were crossed with the master strain F (MSF). Genetic analysis revealed that a single gene, located on chromosome IV, is responsible for resistance to terbinafine and that the alleles responsible for this resistance in these mutants are of a codominant or dominant nature at high terbinafine concentrations. Furthermore, the interaction of this mutation with another one identified on chromosome II causes the double mutant to be highly resistant. CONCLUSIONS: Periodic surveillance of antimycotic susceptibility would be an important measure in detecting the emergence and spread of resistance. Mutation in a single gene could be responsible for resistance to terbinafine and a genic interaction may be responsible for a higher level of antimycotic resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: The understanding of the mechanisms that lead to changes in the sensitivity of a fungus to a given antifungal agent is important both in order to define strategies for the use of such agent and to guide the development of new antifungal agents.  相似文献   

11.
12.
13.
Transformation systems for Aspergillus aculeatus has been developed, based on the use of the pyrithiamine resistance gene of Aspergillus oryzae and the orotidine-5'-monophosphate decarboxylase gene (pyrG) of Aspergillus nidulans. An A. aculeatus mutant which can be transformed effectively by the A. nidulans pyrG gene was isolated as a transformation host. This is the first report of transformation of A. aculeatus.  相似文献   

14.
The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.  相似文献   

15.
16.
Identification of a gene for alpha-tubulin in Aspergillus nidulans.   总被引:24,自引:0,他引:24  
N R Morris  M H Lai  C E Oakley 《Cell》1979,16(2):437-442
This paper demonstrates that revertants of temperature-sensitive benA (β-tubulin) mutations in Aspergillus nidulans can be used to identify proteins which interact with β-tubulin. Three benomyl-resistant benA (β-tubulin) mutants of Aspergillus nidulans, BEN 9, BEN 15 and BEN 19, were found to be temperature-sensitive (ts?) for growth. Temperature sensitivity co-segregated with benomyl resistance among the progeny of outcrosses of BEN 9, 15 and 19 to a wild-type strain, FGSC#99, indicating that temperature sensitivity was caused by mutations in the benA gene in these strains. Eighteen revertants to ts+ were isolated by selection at the restrictive temperature. Four had back-mutations in the benA gene and fourteen carried extragenic suppressor mutations. Two of the back-mutated strains had β-tubulins which differed from the β-tubulins of their parental strains by one (1?) or two (2?) negative charges on two-dimensional gel electrophoresis. Although the β-tubulins of the extragenic suppressor strains were all electrophoretically identical to those of the parental strains, one of the suppressor strains, BEN 9R7, had an electrophoretic abnormality in α1-tubulin (1+). A heterozygous diploid between this strain and a strain with wild-type α1-tubulin was found to have both wild-type and mutant (1+) α1-tubulins. This experiment rules out post-translational modification as a possible cause of the α1-tubulin abnormality. Thus the suppressor mutation in BEN 9R7 must be in a structural gene for α1-tubulin. We propose that this gene be designated tubA to denote that it is a gene for α1-tubulin in A. nidulans.  相似文献   

17.
Cochliobolus heterostrophus Tub1 described here is the first beta-tubulin gene characterized from a naturally occurring benomyl-resistant ascomycete plant pathogen. The gene encodes a protein of 447 amino acids. The coding region of Tub1 is interrupted by three introns, of 116, 55, and 56 nt, situated after codons 4, 12, and 53, respectively. As a result of the preference for pyrimidines in the third position of the codons when a choice exists between purines and pyrimidines, codon usage in the Tub1 gene is biased. Tub1 shows high homology with beta-tubulin genes of other ascomycete species. However, Tub1 is exceptional in having Tyr(167), compared with Phe(167), possessed by beta-tubulin genes of other ascomycetes sequenced thus far. The Tyr(167) residue has been associated with benomyl resistance in other organisms. In contrast, all other benomyl-implicated residues of Tub1 correspond to sensitivity. Based on these results, we suggest that benomyl resistance in the fungus probably is attributed to Tyr(167).  相似文献   

18.
Organophosphate (OP) insecticide resistance in certain strains of Musca domestica is associated with reduction in the carboxylesterase activity of a particular esterase isozyme. This has been attributed to a 'mutant ali-esterase hypothesis', which invokes a structural mutation to an ali-esterase resulting in the loss of its carboxylesterase activity but acquisition of OP hydrolase activity. It has been shown that the mutation in Lucilia cuprina is a Gly137-->Asp substitution in the active site of an esterase encoded by the Lc alpha E7 gene (Newcomb, R.D., Campbell, P.M., Ollis, D.L., Cheah, E., Russell, R.J., Oakeshott, J.G., 1997. A single amino acid substitution converts a carboxylesterase to an organophosphate hydrolase and confers insecticide resistance on a blowfly. Proc. Natl. Acad. Sci. USA 94, 7464-7468). We now report the cloning and characterisation of the orthologous M. domestica Md alpha E7 gene, including the sequencing of cDNAs from the OP resistant Rutgers and OP susceptible sbo and WHO strains. The Md alpha E7 gene has the same intron structure as Lc alpha E7 and encodes a protein with 76% amino acid identity to Lc alpha E7. Comparisons between susceptible and resistance alleles show resistance in M. domestica is associated with the same Gly137-->Asp mutation as in L. cuprina. Bacterial expression of the Rutgers allele shows its product has OP hydrolase activity. The data indicate identical catalytic mechanisms have evolved in orthologous Md alpha E7 and Lc alpha E7 molecules to endow diazinon-type resistance on the two species of higher Diptera.  相似文献   

19.
20.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19), encoded by the aroA locus, is a target site of glyphosate inhibition in bacteria. A glyphosate-resistant aroA allele has been cloned in Escherichia coli from a mutagenized strain of Salmonella typhimurium. Subcloning of this mutant aroA allele shows the gene to reside on a 1.3-kilobase segment of S. typhimurium DNA. Nucleotide sequence analysis of this mutant gene indicates a protein-coding region 427 amino acids in length. Comparison of the mutant and wild type aroA gene sequences reveals a single base pair change resulting in a Pro to Ser amino acid substitution at the 101st codon of the protein. A hybrid gene fusion between mutant and wild type aroA gene sequences was constructed. 5-Enolpyruvylshikimate-3-phosphate synthase was prepared from E. coli cells harboring this construct. The glyphosate-resistant phenotype is shown to be associated with the single amino acid substitution described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号