首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the absence of DNA aggregation, spermidine inhibited the relaxation of negatively supercoiled DNA by Escherichia coli topoisomerase I at concentrations of the polyamine normally found intracellularly. Spermidine also curtailed the cleavage of negatively supercoiled ColE1 DNA by the enzyme in the absence of Mg2+. On the contrary, knotting of M13 single-stranded DNA circles catalyzed by topoisomerase I was stimulated by the polyamine. Relaxation of supercoiled DNA by eukaryotic type 1 topoisomerases, such as calf thymus topoisomerase I and wheat germ topoisomerase, was significantly stimulated by spermidine in the same range of concentrations that inhibited the prokaryotic enzyme. In reactions catalyzed by S1 nuclease, the polyamine enhanced the digestion of single-stranded DNA and inhibited the nicking of negatively supercoiled DNA. These results suggest that spermidine modifies the supercoiled duplex substrate in these reactions by modulating the degree of single strandedness.  相似文献   

2.
The nucleotide preferences of calf thymus topoisomerases I and II for recognition of supercoiled DNA have been assessed by the relaxation and cleavage of DNA containing base-specific phosphorothioate substitutions in one strand. The type I enzyme is inhibited to varying degrees by all modified DNAs, but most effectively (by approximately 60%) if deoxyguanosine 5'-O-(1-thiomonophosphate) (dGMP alpha S) is incorporated into negatively supercoiled DNA. A DNA in which all internucleotide linkages of one strand are phosphorothionate is relaxed, most probably via the unsubstituted strand. The type II enzyme is inhibited when deoxyadenosine 5'-O-(1-thiomonophosphate) (dAMP alpha S) or deoxyribosylthymine 5'-O-(1-thiomonophosphate) is incorporated into the DNA substrate, and the course of the relaxation reaction changes from a distributive mode to a predominantly processive mode. A fully substituted DNA is very poorly relaxed by the type II enzyme, illustrating the strict commitment of the enzyme to relaxation via double-strand cleavage. The sense of supercoiling does not affect the inhibition profile of either enzyme. DNA strand breaks introduced by type II topoisomerase in a normal control DNA or deoxycytidine 5'-O-(1-thiomonophosphate)-substituted DNA on treatment with sodium dodecyl sulfate at low ionic strength are prevented by pretreatment with 0.2 M NaCl. In contrast, breaks in DNA having either dAMP alpha S or all four phosphorothioate nucleotides incorporated in one strand are prevented only with higher NaCl concentrations. Thus indicating activity at the phosphorothioate linkage 5' to dA but not 5' to dC. We conclude that topoisomerase II activity occurs preferentially at sites possessing dAMP or dTMP, and that dGMP is involved in DNA recognition by topoisomerase I.  相似文献   

3.
4.
Type I restriction enzymes cleave DNA at non-specific sites far from their recognition sequence as a consequence of ATP-dependent DNA translocation past the enzyme. During this reaction, the enzyme remains bound to the recognition sequence and translocates DNA towards itself simultaneously from both directions, generating DNA loops, which appear to be supercoiled when visualised by electron microscopy. To further investigate the mechanism of DNA translocation by type I restriction enzymes, we have probed the reaction intermediates with DNA topoisomerases. A DNA cleavage-deficient mutant of EcoAI, which has normal DNA translocation and ATPase activities, was used in these DNA supercoiling assays. In the presence of eubacterial DNA topoisomerase I, which specifically removes negative supercoils, the EcoAI mutant introduced positive supercoils into relaxed plasmid DNA substrate in a reaction dependent on ATP hydrolysis. The same DNA supercoiling activity followed by DNA cleavage was observed with the wild-type EcoAI endonuclease. Positive supercoils were not seen when eubacterial DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I, which removes both positive and negative supercoils. Furthermore, addition of eukaryotic DNA topoisomerase I to the product of the supercoiling reaction resulted in its rapid relaxation. These results are consistent with a model in which EcoAI translocation along the helical path of closed circular DNA duplex simultaneously generates positive supercoils ahead and negative supercoils behind the moving complex in the contracting and expanding DNA loops, respectively. In addition, we show that the highly positively supercoiled DNA generated by the EcoAI mutant is cleaved by EcoAI wild-type endonuclease much more slowly than relaxed DNA. This suggests that the topological changes in the DNA substrate associated with DNA translocation by type I restriction enzymes do not appear to be the trigger for DNA cleavage.  相似文献   

5.
6.
7.
Using heteroduplex molecules formed from a pair of plasmids, one of which contains a small deletion relative to the other, it is shown that bacterial topoisomerase I can relax a positively supercoiled DNA if a short single-stranded loop is placed in the DNA. This result supports the postulate that the specificity of bacterial DNA topoisomerase I for negatively supercoiled DNA in its relaxation reaction derives from the requirement of a short single-stranded DNA segment in the active enzyme-substrate complex. Nucleolytic and chemical probing of complexes between bacterial DNA topoisomerase I and heteroduplex DNA molecules containing single-stranded loops ranging from 13 to 27 nucleotides in length suggests that the enzyme binds specifically to the region containing a single-stranded loop; the site of DNA cleavage by the topoisomerase appears to lie within the single-stranded loop, with the enzyme interacting with nucleotides on both sides of the point of cleavage.  相似文献   

8.
DNA topoisomerase II is an essential nuclear enzyme for proliferation of eukaryotic cells and plays important roles in many aspects of DNA processes. In this report, we have demonstrated that the catalytic activity of topoisomerase IIalpha, as measured by decatenation of kinetoplast DNA and by relaxation of negatively supercoiled DNA, was stimulated approximately 2-3-fold by the tumor suppressor p53 protein. In order to determine the mechanism by which p53 activates the enzyme, the effects of p53 on the topoisomerase IIalpha-mediated DNA cleavage/religation equilibrium were assessed using the prototypical topoisomerase II poison, etoposide. p53 had no effect on the ability of the enzyme to make double-stranded DNA break and religate linear DNA, indicating that the stimulation of the enzyme catalytic activity by p53 was not due to alteration in the formation of covalent cleavable complexes formed between topoisomerase IIalpha and DNA. The effects of p53 on the catalytic inhibition of topoisomerase IIalpha were examined using a specific catalytic inhibitor, ICRF-193, which blocks the ATP hydrolysis step of the enzyme catalytic cycle. Clearly manifested in decatenation and relaxation assays, p53 reduced the catalytic inhibition of topoisomerase IIalpha by ICRF-193. ATP hydrolysis assays revealed that the ATPase activity of topoisomerase IIalpha was specifically enhanced by p53. Immunoprecipitation experiments revealed that p53 physically interacts with topoisomerase IIalpha to form molecular complexes without a double-stranded DNA intermediary in vitro. To investigate whether p53 stimulates the catalytic activity of topoisomerase II in vivo, we expressed wild-type and mutant p53 in Saos-2 osteosarcoma cells lacking functional p53. Wild-type, but not mutant, p53 stimulated topoisomerase II activity in nuclear extract from these transfected cells. Our data propose a new role for p53 to modulate the catalytic activity of topoisomerase IIalpha. Taken together, we suggest that the p53-mediated response of the cell cycle to DNA damage may involve activation of topoisomerase IIalpha.  相似文献   

9.
DNA topoisomerase is involved in DNA repair and replication. In this study, a novel ATP-independent 30-kDa type I DNA topoisomerase was purified and characterized from a marine methylotroph, Methylophaga sp. strain 3. The purified enzyme composed of a single polypeptide was active over a broad range of temperature and pH. The enzyme was able to relax only negatively supercoiled DNA. Mg(2+) was required for its relaxation activity, while ATP gave no effect. The enzyme was clearly inhibited by camptothecin, ethidium bromide, and single-stranded DNA, but not by nalidixic acid and etoposide. Interestingly, the purified enzyme showed Mn(2+)-activated endonuclease activity on supercoiled DNA. The N-terminal sequence of the purified enzyme showed no homology with those of other type I enzymes. These results suggest that the purified enzyme is an ATP-independent type I DNA topoisomerase that has, for the first time, been characterized from a marine methylotroph.  相似文献   

10.
11.
Movement of the DNA replication machinery through the double helix induces acute positive supercoiling ahead of the fork and precatenanes behind it. Because topoisomerase I and II create transient single- and double-stranded DNA breaks, respectively, it has been assumed that type I enzymes relax the positive supercoils that precede the replication fork. Conversely, type II enzymes primarily resolve the precatenanes and untangle catenated daughter chromosomes. However, studies on yeast and bacteria suggest that type II topoisomerases may also function ahead of the replication machinery. If this is the case, then positive DNA supercoils should be the preferred relaxation substrate for topoisomerase IIalpha, the enzyme isoform involved in replicative processes in humans. Results indicate that human topoisomerase IIalpha relaxes positively supercoiled plasmids >10-fold faster than negatively supercoiled molecules. In contrast, topoisomerase IIbeta, which is not required for DNA replication, displays no such preference. In addition to its high rates of relaxation, topoisomerase IIalpha maintains lower levels of DNA cleavage complexes with positively supercoiled molecules. These properties suggest that human topoisomerase IIalpha has the potential to alleviate torsional stress ahead of replication forks in an efficient and safe manner.  相似文献   

12.
A catenating enzyme and a type I topoisomerase were purified from Trypanosoma cruzi. We investigated the inhibitory effect of DNA-intercalating drugs on topoisomerisations catalysed by these enzymes. Inhibition of catenation was detected by electrophoretic analysis in neutral agarose gels. However, the inhibition of relaxation was not readily detectable in these gels since supercoiled DNA, which was relaxed in the presence of an intercalating drug, returned to a supercoiled state when the drug was removed. Thus electrophoretic analyses were made in gels containing chloroquine so that unreacted DNA could be distinguished from DNA relaxed by the enzyme. The results show that the catenation was more sensitive to DNA-intercalating drugs than the relaxation.  相似文献   

13.
E. coli DNA topoisomerase I catalyzes the hydrolysis of short, single stranded oligodeoxynucleotides. It also forms a covalent protein-DNA complex with negatively supercoiled DNA in the absence of Mg2+ but requires Mg2+ for the relaxation of negatively supercoiled DNA. In this paper we investigate the effects of various divalent metals on catalysis. For the relaxation reaction, maximum enzyme activity plateaus after 2.5 mM Mg2+. However, the rate of cleavage of short oligodeoxynucleotide increased linearly between 0 and 15 mM Mg2+. In the oligodeoxynucleotide cleavage reaction, Ca2+, Mn2+, Co2+, and Zn2+ inhibit enzymatic activity. When these metals are coincubated with Mg2+ at equimolar concentrations, the normal effect of Mg2+ is not detectable. Of these metals, only Ca2+ can be substituted for Mg2+ as a metal cofactor in the relaxation reaction. And when Mg2+ is coincubated with Mn2+, Co2+, or Zn2+ at equimolar concentrations, the normal effect of Mg2+ on relaxation is not detectable. We propose that Mg2+ allows the protein-DNA complex to assume a conformation necessary for strand passage and enhance the rate of enzyme turnover.  相似文献   

14.
Camptothecin, a cytotoxic antitumor compound, has been shown to produce protein-linked DNA breaks mediated by mammalian topoisomerase I. We have investigated the mechanism by which camptothecin disrupts DNA processing by topoisomerase I and have examined the effect of certain structurally related compounds on the formation of a DNA-topoisomerase I covalent complex. Enzyme-mediated cleavage of supercoiled plasmid DNA in the presence of camptothecin was completely reversed upon the addition of exogenous linear DNA or upon dilution of the reaction mixture. Camptothecin and topoisomerase I produced the same amount of cleavage from supercoiled DNA or relaxed DNA. In addition, the alkaloid decreased the initial velocity of supercoiled DNA relaxation mediated by catalytic quantities of topoisomerase I. Inhibition occurred under conditions favoring processive catalysis as well as under conditions favoring distributive catalysis. By use of [3H]camptothecin and an equilibrium dialysis assay, the alkaloid was shown to bind reversibly to a DNA-topoisomerase I complex, but not to isolated enzyme or isolated DNA. These results are consistent with a model in which camptothecin reversibly traps an intermediate involved in DNA unwinding by topoisomerase I and thereby perturbs a set of equilibria, resulting in increased DNA cleavage. By examining certain compounds that are structurally related to camptothecin, it was found that the 20-hydroxy group, which has been shown to be essential for antitumor activity, was also necessary for stabilization of the covalent complex between DNA and topoisomerase I. In contrast, no such correlation existed for UV-light-induced cleavage of DNA by Cu(II)-camptothecin derivatives.  相似文献   

15.
In this study, we used, for the first time, atomic force microscope (AFM) images to investigate the mode of action of DNA topoisomerase I (topo I) in the presence and absence of its inhibitors: camptothecin (CPT) and tyrphostin AG-1387. The results revealed that in the absence of the inhibitors, the enzyme relaxed supercoiled DNA starting from a certain point in the DNA molecules and proceeded in one direction towards one of the edges of the DNA molecule. In addition, the relaxation of the supercoiled DNA is subsequently followed by a knotting event. In the presence of CPT, enzyme-supercoiled DNA complexes in which the enzyme is locked inside a relaxed region of the supercoiled DNA molecule were observed. Tyrphostin AG-1387 altered the DNA relaxation process of topo I producing unique shapes of DNA molecules. AFM images of the topo I protein provided a picture of the enzyme, which resembles its known crystallographic structure. Thus, AFM images provide new information on the mode of action of topo I in the absence and presence of its inhibitors.  相似文献   

16.
A topoisomerase able to introduce positive supercoils in a closed circular DNA, has been isolated from the archaebacterium Sulfolobus acidocaldarius. This enzyme, fully active at 75 degrees C, performed in vitro positive supercoiling either from negatively supercoiled, or from relaxed DNA in a catalytic reaction. In the presence of polyethylene glycol (PEG 6000), this reaction became very fast and highly processive, and the product was positively supercoiled DNA with a high superhelical density (form I+). Very low (5 - 10 micromoles) ATP concentrations were sufficient to support full supercoiling; the nonhydrolyzable analogue adenosine-5' -0-(3-thiotriphosphate) also sustained the production of positive supercoils, but to a lesser extent, suggesting that ATP hydrolysis was necessary for efficient activity. Nevertheless, low residual of positive supercoiling occurred, even in the absence of ATP, when the substrate was negatively supercoiled. Finally, the different ATP-driven topoisomerizations observed, i.e., relaxation of negative supercoils and positive supercoiling, in all cases increased the linking number of DNA in steps of 1, suggesting the action of a type I, rather than a type II topoisomerase.=  相似文献   

17.
Sodium stibogluconate and Ureastibamine, two potent antileishmanial drugs specifically inhibit the relaxation of supercoiled plasmid pBR322 catalyzed by DNA topoisomerase I of Leishmania donovani. Dose dependent inhibition suggests that the drugs interact with the enzyme rather than the DNA. The inhibition reported here concerning a type I DNA topoisomerase demonstrates at least one possible mode of action of these antileishmanial drugs.  相似文献   

18.
Increment of DNA topoisomerases in chemically and virally transformed cells   总被引:1,自引:0,他引:1  
The activities of topoisomerases I and II were assayed in subcellular extracts obtained from nontumorigenic BALB/c 3T3 A31 and normal rat kidney (NRK) cell lines and from the same cells transformed by benzo[a]pyrene (BP-A31), Moloney (M-MSV-A31) and Kirsten (K-A31) sarcoma viruses, and simian virus 40 (SV-NRK). The enzymatic activity of topoisomerase I was monitored by the relaxation of negatively supercoiled pBR322 DNA and by the formation of covalent complexes between 32P-labeled DNA and topoisomerase I. Topoisomerase II activity was determined by decatenation of kinetoplast DNA (k-DNA). It was found that nuclear and cytoplasmic type I topoisomerase specific activities were higher in every transformed cell line than in the normal counterparts. These differences cannot be attributed to an inhibitory factor present in A31 cells. When chromatin was treated at increasing ionic strengths, the 0.4 M NaCl extract showed the highest topoisomerase I specific activity. Moreover, in this fraction the transformed cells exhibited the most significant increment in the enzymatic activity as compared with nontransformed cultures. Spontaneously transformed A31 cells showed topoisomerase I activity similar to that of extracts of cells transformed by benzo[a]pyrene. Topoisomerase II specific activity was also increased in SV-NRK cells, as judged by the assay for decatenation of k-DNA to yield minicircle DNA.  相似文献   

19.
Human topoisomerase I is a nuclear enzyme that catalyses DNA relaxation and phosphorylation of SR proteins. Topoisomerase I participates in several protein-protein interactions. We performed a proteomic analysis of protein partners of topoisomerase I. Two methods were applied to proteins of the nuclear extract of HeLa cells: a co-immunoprecipitation and an affinity chromatography combined with mass spectrometry. Complexes formed by topoisomerase I with its protein partners were immunoprecipitated by scleroderma anti-topoisomerase I antibodies. To identify binding sites for the protein partners, baits corresponding to fragments of topoisomerase I were constructed and used in the affinity chromatography. The N-terminal domain and the cap region of the core domain appeared to be the main regions that bound proteins. We identified 36 nuclear proteins that were associated with topoisomerase I. The proteins were mainly involved in RNA metabolism. We found 29 new and confirmed 7 previously identified protein partners of topoisomerase I. More than 40% proteins that associate with the cap region contain two closely spaced RRM domains. Docking calculations identified the RRM domains as a possible site for the interaction of these proteins with the cap region.  相似文献   

20.
Fannon M  Forsten KE  Nugent MA 《Biochemistry》2000,39(6):1434-1445
Basic fibroblast growth factor (bFGF) binds to cell surface tyrosine kinase receptor proteins and to heparan sulfate proteoglycans. The interaction of bFGF with heparan sulfate on the cell surface has been demonstrated to impact receptor binding and biological activity. bFGF receptor binding affinity is reduced on cells that do not express heparan sulfate. The addition of soluble heparin or heparan sulfate has been demonstrated to rescue the bFGF receptor binding affinity on heparan sulfate deficient cells yet has also been shown to inhibit binding under some conditions. While the chemical requirements of the heparin-bFGF-receptor interactions have been studied in detail, the possibility that heparin enhances bFGF binding in part by physically associating with the cell surface has not been fully evaluated. In the study presented here, we have investigated the possibility that heparin binding to the cell surface might play a role in modulating bFGF receptor binding and activity. Balb/c3T3 cells were treated with various concentrations of sodium chlorate, so as to express a range of endogenous heparan sulfate sites, and [(125)I]bFGF binding was assessed in the presence of a range of heparin concentrations. Low concentrations of heparin (0.1-30 nM) enhanced bFGF receptor binding to an extent that was inversely proportional to the amount of endogenous heparan sulfate sites present. At high concentrations (10 microM), heparin inhibited bFGF receptor binding in cells under all conditions. The ability of heparin to stimulate and inhibit bFGF-receptor binding correlated with altered bFGF-stimulated tyrosine kinase activity and cell proliferation. Under control and chlorate-treated conditions, [(125) I]heparin was observed to bind with a high affinity to a large number of binding sites on the cells (K(d) = 57 and 50 nM with 3.5 x 10(6) and 3.6 x 10(6) sites/cell for control and chlorate-treated cells, respectively). A mathematical model of this process revealed that the dual functions of heparin in bFGF binding were accurately represented by heparin cell binding-mediated stimulation and soluble heparin-mediated inhibition of bFGF receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号