首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most early evolutionary thinkers came from medicine, yet evolution has had a checkered history in medical education. It is only in the last few decades that serious efforts have begun to be made to integrate evolutionary biology into the medical curriculum. However, it is not clear when, where (independently or as part of preclinical or clinical teaching courses) and, most importantly, how should medical students learn the basic principles of evolutionary biology applied to medicine, known today as evolutionary or Darwinian medicine. Most clinicians are ill-prepared to teach evolutionary biology and most evolutionary biologists ill-equipped to formulate clinical examples. Yet, if evolutionary science is to have impact on clinical thought, then teaching material that embeds evolution within the clinical framework must be developed. In this paper, we use two clinical case studies to demonstrate how such may be used to teach evolutionary medicine to medical students in a way that is approachable as well as informative and relevant.  相似文献   

2.
Evolution is a complex subject that requires knowledge of basic biological concepts and the ability to connect them across multiple scales of time, space, and biological organization. Avida-ED is a digital evolution educational software environment designed for teaching and learning about evolution and the nature of science in undergraduate biology courses. This study describes our backward design approach to developing an instructional activity using Avida-ED for teaching and learning about evolution in a large-enrollment introductory biology course. Using multiple assessment instruments, we measured student knowledge and understanding of key principles of natural selection before and after instruction on evolution (including the Avida-ED activity). Assessment analysis revealed significant post-instruction learning gains, although certain evolutionary principles (most notably those including genetics concepts, such as the genetic origin of variation) remained particularly difficult for students, even after instruction. Students, however, demonstrated a good grasp of the genetic component of the evolutionary process in the context of a problem on Avida-ED. We propose that: (a) deep understanding of evolution requires complex systems thinking skills, such as connecting concepts across multiple levels of biological organization, and (b) well designed use of Avida-ED holds the potential to help learners build a meaningful and transferable understanding of the evolutionary process. An erratum to this article can be found at  相似文献   

3.
Medical students have much to gain by understanding how evolutionary principles affect human health and disease. Many theoretical and experimental studies have applied lessons from evolutionary biology to issues of critical importance to medical science. A firm grasp of evolution and natural selection is required to understand why the human body remains vulnerable to many diseases. Although we often integrate evolutionary concepts when we teach medical students and residents, the vast majority of medical students never receive any instruction on evolution. As a result, many trainees lack the tools to understand key advances and miss valuable opportunities for education and research. Here, we outline some of the evolutionary principles that we wished we had learned during our medical training.  相似文献   

4.
In my role as an instructor I am constantly looking for ways to more effectively convey information to my audience, which is typically the students in my class. However, the same concerns apply to most of the people who attend a seminar. The approach you take to making the material easier to understand is likely to be influenced by the course you teach. That is, the same instructor may use different examples when teaching an upper division vs. a lower division course. I teach introductory biology, and my students may have little familiarity with cell biology, let alone autophagy. Accordingly, I have tried to consider how to illustrate the importance of autophagy in a way that can be comprehended by people who may not even be familiar with the term.  相似文献   

5.
Science teachers can use examples and concepts from evolutionary medicine to teach the three concepts central to evolution: common descent, the processes or mechanisms of evolution, and the patterns produced by descent with modification. To integrate medicine into common ancestry, consider how the evolutionary past of our (or any) species affects disease susceptibility. That humans are bipedal has produced substantial changes in our musculoskeletal system, as well as causing problems for childbirth. Mechanisms such as natural selection are well exemplified in evolutionary medicine, as both disease-causing organism and their targets adapt to one another. Teachers often use examples such as antibiotic resistance to teach natural selection: it takes little alteration of the lesson plan to make explicit that evolution is key to understanding the principles involved. Finally, the pattern of evolution can be illustrated through evolutionary medicine because organisms sharing closer ancestry also share greater susceptibility to the same disease-causing organisms. Teaching evolution using examples from evolutionary medicine can make evolution more interesting and relevant to students, and quite probably, more acceptable as a valid science.  相似文献   

6.

Background

Previous research has identified numerous factors to explain why students have difficulty learning about evolution. Some of these factors include a student’s background (including their religion and major of study), the type of evolution instruction, and the inclusion of the nature of science (NOS) instruction. Sparse but more recent work has investigated the impact of a religious-scientist role model to help dampen perceptions of conflict between evolutionary science and worldview. We had two research goals: (1) to identify which of these factors influence students’ learning of evolution in post-secondary education; and (2) to describe the relationships among incoming biology students’ creationist reasoning, knowledge of evolution, and perceived conflict between evolution and their worldview.

Results

The single factor linked with the reduction in both creationist reasoning and in students’ perceived conflict between evolution and their worldview through a semester was the presence of a role model. Likewise, knowledge and perceived relevance of evolution increased in sections with a role model instructor and with evidence-based evolution instruction. Otherwise, tested factors (the type of evolution instruction, inclusion of NOS, biology-major/nonmajor, GPA, or religiosity) were not shown to be associated with these three constructs. We found that in the first week of the semester students with higher knowledge of evolution had lower creationist reasoning and lower perceived conflict.

Conclusions

The single factor that collectively reduced erroneous beliefs, increased scientific knowledge, and minimized perceived conflict was the presence of a religious-scientist role model. Previous work has suggested a role model could positively impact students’ learning of evolution, yet this is the first quasi-experimental evidence supporting the importance of the course instructor as the role model in students’ learning of evolution. These findings are especially relevant to institutions with a greater proportion of religious students who could benefit from modeling to help foster their learning of evolution.
  相似文献   

7.
Imparting a basic understanding of evolutionary principles to students in an active, engaging fashion can be troublesome because the logistics involved in designing experiments where students pose their own questions and use the data to test alternative hypotheses often outstrip time and financial constraints. In recent years, educators have begun publishing exercises that teach evolution using innovative, in-class experiments. This article adds to this growing forum by describing a classroom exercise that introduces the concept of evolution by natural selection in a hypothesis-driven, experimental fashion, using a deck of cards. Our standard exercise is suitable for upper-level high school and introductory biology students at the college level. In this paper, we discuss the exercise in detail and give several examples that illustrate how our games provide accessible bridges to the primary literature. Finally, we discuss how extensions of our basic exercise can be used to effectively teach advanced evolutionary concepts.  相似文献   

8.
The strength of the evidence supporting evolution has increased markedly since the discovery of DNA but, paradoxically, public resistance to accepting evolution seems to have become stronger. A key dilemma is that science faculty have often continued to teach evolution ineffectively, even as the evidence that traditional ways of teaching are inferior has become stronger and stronger. Three pedagogical strategies that together can make a large difference in students' understanding and acceptance of evolution are extensive use of interactive engagement, a focus on critical thinking in science (especially on comparisons and explicit criteria) and using both of these in helping the students actively compare their initial conceptions (and publicly popular misconceptions) with more fully scientific conceptions. The conclusion that students' misconceptions must be dealt with systematically can be difficult for faculty who are teaching evolution since much of the students' resistance is framed in religious terms and one might be reluctant to address religious ideas in class. Applications to teaching evolution are illustrated with examples that address criteria and critical thinking, standard geology versus flood geology, evolutionary developmental biology versus organs of extreme perfection, and the importance of using humans as a central example. It is also helpful to bridge the false dichotomy, seen by many students, between atheistic evolution versus religious creationism. These applications are developed in detail and are intended to be sufficient to allow others to use these approaches in their teaching. Students and other faculty were quite supportive of these approaches as implemented in my classes.  相似文献   

9.

Background

Acceptance and understanding of evolutionary ideas remains low in the United States despite renewed science education standards, nearly unanimous acceptance among scientists, and decades of research on the teaching and learning of evolution. Early exposure to evolutionary concepts may be one way to reduce resistance to learning and accepting evolution. While there is emerging evidence that elementary students can learn and retain evolutionary ideas, there is also emerging evidence that elementary teachers may be unprepared to teach evolution. It may not be possible to train elementary teachers like their secondary counterparts who receive specialized training in science. This exploratory study was designed to determine if the 147 surveyed preservice elementary teachers (PETs) who are most willing to specialize in science maintain a greater understanding and acceptance of evolution. Such a relationship could have implications for teacher training and science instruction at elementary schools.

Results

As willingness to specialize in science increases so too does acceptance of evolution. For both measures, there was a monotonic increase with increasing willingness to specialize in science. There was a significant correlation (p?=?.047) between willingness to specialize in science and acceptance of evolution as measured by the MATE. There was not a significant correlation between willingness to specialize in science and understanding of evolution as measured by the CINS (p?=?.21). The thirty-two PETs who are enthusiastically willing to specialize in science had the highest understanding and acceptance of evolution.

Conclusions

It may be possible to identify prospective elementary teachers that could assume roles as specialists simply by identifying PETs’ willingness to specialize. Such students appear to enter elementary teacher preparation programs with the science background and enthusiasm for science required to be specialists without the need for much additional training. Thus, science teacher educators could help local elementary school principals identify graduating, and recently graduated, elementary teachers who are willing to specialize in science. Identified teachers could serve as specialists to work with their building and district colleagues to develop, among other topics, evolution related curricular materials and facilitate the implementation of those materials through co-teaching and peer coaching.
  相似文献   

10.
Recent science education reform has led to an increased emphasis on engaging students in inquiry and science practices rather than having them simply memorize scientific facts. However, many teachers of elementary science may themselves have had more traditional science learning experiences, and may therefore be unsure about inquiry-based teaching methods. One way to enhance preservice teachers' comfort with and desire to teach science using a hands-on approach might be to engage them in science learning experiences alongside children during their educator preparation program. The purpose of this article is to share how one faculty member and a cooperating teacher from a partner school involve teacher candidates in working with children in the school's garden, allowing them to personally experience inquiry while witnessing firsthand the potential benefits to children of authentic science learning through garden based activities.  相似文献   

11.
I have taught developmental biology in Essen for 30 years. Since my department is named Zoophysiologie (Zoophysiology), besides Developmental Biology, I also have to teach General Animal Physiology. This explains why the time for teaching developmental biology is restricted to a lecture course, a laboratory course and several seminar courses. However, I also try to demonstrate in the lecture courses on General Physiology the close relationship between developmental biology, physiology, morphology, anatomy, teratology, carcinogenesis, evolution and ecology (importance of environmental factors on embryogenesis). Students are informed that developmental biology is a core discipline of biology. In the last decade, knowledge about molecular mechanisms in different organisms has exponentially increased. The students are trained to understand the close relationship between conserved gene structure, gene function and signaling pathways, in addition to or as an extension of, classical concepts. Public reports about the human genome project and stem cell research (especially therapeutic and reproductive cloning) have shown that developmental biology, both in traditional view and at the molecular level, is essential for the understanding of these complex topics and for serious and non-emotional debate.  相似文献   

12.
Christensen AC 《Genetics》2000,155(3):999-1004
I have used an exercise involving domestic cats in the General Genetics course at the University of Nebraska-Lincoln for the past 5 years. Using a coherent set of traits in an organism familiar to the students makes it easy to illustrate principles of transmission and population genetics. The one-semester course consists primarily of sophomores and juniors who have either taken a one-semester introductory biology course, a one-semester cell biology course, or have a strong high school biology background. The students are given a handout and asked to determine the genotype at seven unlinked loci of at least one cat. To fill out the form, the students have to grasp such concepts as dominance, incomplete dominance, temperature-sensitive mutations, epistatic interactions, sex linkage, and variable expressivity. Completing the form reinforces these concepts as they observe the cat's phenotype and fill in the genotype. I then analyze the collected data and use it in my lectures on population genetics to illustrate the Hardy-Weinberg equilibrium, calculate allele frequencies, and use statistics. This allows the students to look at population genetics in a very positive light and provides concrete examples of some often misunderstood principles.  相似文献   

13.
Accepting evolution   总被引:2,自引:0,他引:2  
Poor public perceptions and understanding of evolution are not unique to the developed and more industrialized nations of the world. International resistance to the science of evolutionary biology appears to be driven by both proponents of intelligent design and perceived incompatibilities between evolution and a diversity of religious faiths. We assessed the success of a first-year evolution course at the University of Cape Town and discovered no statistically significant change in the views of students before the evolution course and thereafter, for questions that challenged religious ideologies about creation, biodiversity, and intelligent design. Given that students only appreciably changed their views when presented with "facts," we suggest that teaching approaches that focus on providing examples of experimental evolutionary studies, and a strong emphasis on the scientific method of inquiry, are likely to achieve greater success. This study also reiterates the importance of engaging with students' prior conceptions, and makes suggestions for improving an understanding and appreciation of evolutionary biology in countries such as South Africa with an inadequate secondary science education system, and a dire lack of public engagement with issues in science.  相似文献   

14.
The goal of this research was to illuminate the relationship between students’ acceptance and understanding of macroevolution. Our research questions were: (1) Is there a relationship between knowledge of macroevolution and acceptance of the theory of evolution?; (2) Is there a relationship between the amount of college level biology course work and acceptance of evolutionary theory and knowledge of macroevolution?; and (3) Can college student acceptance of the theory of evolution and knowledge of macroevolution change over the course of a semester? The research participants included 667 students from a first-semester biology course and 74 students from the evolutionary biology course. Data were collected using both the MATE (a measure of the acceptance of evolutionary theory) and the MUM (a measure of understanding of macroevolution). Pre-instruction data were obtained for the introductory biology course, and pre- and post-data were obtained for the evolutionary biology course. Analysis revealed acceptance of evolution (as measured by the MATE) was correlated to understanding of macroevolution, and the number of biology courses was significantly correlated to acceptance and knowledge of macroevolution. Finally, there was a statistically significant change in students’ understanding of macroevolution and acceptance of evolution after the one-semester evolutionary biology course. Significance of these findings is discussed.  相似文献   

15.
The research study investigated the possible associations among science and biology teachers?? knowledge and belief variables concerning teaching evolution in science and biology classes. Specifically, this study examined how a set of variables including teachers?? understanding of evolution and nature of science (NOS) is related to the set of variables including teachers?? acceptance of evolution and perceptions of teaching evolution (i.e., perceptions of the necessity of addressing evolution in their classrooms, perceptions of the factors that impede addressing evolution in their classrooms, and personal science teaching efficacy beliefs regarding evolution). Data were collected from science and biology teachers through administration of Evolution Content Knowledge Test, Measure of Acceptance of the Theory of Evolution, Nature of Science as Argument Questionnaire and Teachers?? Perceptions of Teaching Evolution Scale. Canonical correlation analysis findings suggested that teachers who had thorough understanding of evolution and NOS were likely to both accept the scientific validity of evolution and believe the necessity of addressing evolution in the classrooms. On the other hand, teachers with thorough understanding of evolution and NOS did not necessarily believe that they have a stronger sense of self-efficacy beliefs regarding teaching evolution and that there are fewer obstacles to addressing evolution in the classroom. The research is significant in that it provides empirical evidence clarifying the interactions between teachers?? understanding and beliefs in teaching evolution. Implications for science teacher education are discussed.  相似文献   

16.
Students in a large introductory biology course at Flinders University, South Australia, were quizzed on misconceptions relating to evolution and their acceptance of evolutionary theory before and after completing the course. By providing students with a course featuring a multifaceted approach to learning about evolution, students improved their understanding and decreased their overall misconceptions. A variety of instructional methods and assessment tools were utilized in the course, and it employed an active and historically rich pedagogical approach. Although student learning and understanding of evolutionary theory improved throughout the course, it did not alter the beliefs of students who commented both before and after the course that religious theories provided adequate explanation for the diversity of life. Interestingly, students who maintained this belief scored more poorly on the final examination than students who considered evolution as the best explanation for the diversity of life.  相似文献   

17.
We propose a human-centered evolutionary curriculum based around the three questions: Who am I? Where do I come from? How do I fit in? We base our curriculum on our experiences as an evolutionary biologist/paleontologist (NE) and as a secondary level special education science teacher (GE)—and not least from our joint experience as co-editors-in-chief of this journal. Our proposed curriculum starts and ends with human biology and evolution, linking these themes with topics as diverse as the “tree of life” (systematics), anthropology, Charles Darwin, cultural evolution, ecology, developmental biology, molecular evolution/genetics, paleontology, and plate tectonics. The curriculum is “universal” as it is designed to be taught at all levels, K–16. The curriculum is flexible: “modules” may be expanded and contracted, reordered, or modified to fit specific grade level needs—and the requirements and interests of local curricula and teachers. We further propose that students utilize workbooks from online or printed sources to investigate the local answers to the general questions (e.g., “Who am I?”), while classroom instruction is focused on the larger scale issues outlined in the modules of our curriculum.  相似文献   

18.
Faculty members from the University of South Dakota attended the Curriculum Reform Institute offered by the University of Wisconsin at Oshkosh, WI, during the summer of 2002 to design a course sequence for elementary education majors that better meets their needs for both content and pedagogy based on the science education standards. The special section of introductory biology that resulted from this workshop is designed to use laboratories and activities that either help students learn major concepts in the life sciences or model how to teach these concepts to their future K-8 students. This study describes how the active, hands-on learning opportunity for preservice teachers with its emphasis on both content and performance-based assessment was implemented in an introductory biology course for elementary education majors during the spring of 2004. During the initial offering of this course, student perceptions about what helped them to learn in the special section was compared with their nonscience major peers in the large lecture-intensive class that they would have taken. Each group of students completed early and late web-based surveys to assess their perceptions about learning during the courses. After the completion of the course, students in the special section appreciated how the relevance of science and conducting their own scientific experimentation helped them learn, enjoyed working and studying in small groups, valued diverse class time with very little lecture, were more confident in their abilities in science, and were more interested in discussing science with others. This course format is recommended for science classes for preservice teachers.  相似文献   

19.
In an effort to understand how to improve student learning about evolution, a focus of science education research has been to document and address students?? naive ideas. Less research has investigated how students reason about alternative scientific models that attempt to explain the same phenomenon (e.g., which causal model best accounts for evolutionary change?). Within evolutionary biology, research has yet to explore how non-adaptive factors are situated within students?? conceptual ecologies of evolutionary causation. Do students construct evolutionary explanations that include non-adaptive and adaptive factors? If so, how are non-adaptive factors structured within students?? evolutionary explanations? We used clinical interviews and two paper and pencil instruments (one open-response and one multiple-choice) to investigate the use of non-adaptive and adaptive factors in undergraduate students?? patterns of evolutionary reasoning. After instruction that included non-adaptive causal factors (e.g., genetic drift), we found them to be remarkably uncommon in students?? explanatory models of evolutionary change in both written assessments and clinical interviews. However, consistent with many evolutionary biologists?? explanations, when students used non-adaptive factors they were conceptualized as causal alternatives to selection. Interestingly, use of non-adaptive factors was not associated with greater understanding of natural selection in interviews or written assessments, or with fewer naive ideas of natural selection. Thus, reasoning using non-adaptive factors appears to be a distinct facet of evolutionary thinking. We propose a theoretical framework for an expert?Cnovice continuum of evolutionary reasoning that incorporates both adaptive and non-adaptive factors, and can be used to inform instructional efficacy in evolutionary biology.  相似文献   

20.
Biological evolution and abiogenesis are distinct branches of science, although they are closely related in the context of a holistic evolutionary conceptual framework. The relationship between evolution and abiogenesis furnishes profound insights into the nature of science, a much emphasised aspect of modern science education. But there appears to be a great deal of ambiguity about the place of abiogenesis in upper secondary curricula, being the stage of formal education at which students are usually first exposed to evolutionary theory in any depth. Some official curricula completely omit any reference to the issue, others fleetingly touch on it, and yet others fully incorporate it. This paper argues that abiogenesis should be included in upper secondary biology curricula, but that students need to be made aware of the distinctions between chemical and biological evolutionary theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号