首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ –sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify sarcolemmal utrophin and muscle regeneration in muscle biopsies will be invaluable for assessing utrophin modulator activity in future clinical trials.  相似文献   

2.
Duchenne muscular dystrophy is the most commonly inherited neuromuscular disorder in humans. Although the primary genetic deficiency of dystrophin in X-linked muscular dystrophy is established, it is not well-known how pathophysiological events trigger the actual fibre degeneration. We have therefore performed a DIGE analysis of normal diaphragm muscle versus the severely affected x-linked muscular dystrophy (MDX) diaphragm, which represents an established animal model of dystrophinopathy. Out of 2398 detectable 2-D protein spots, 35 proteins showed a drastic differential expression pattern, with 21 proteins being decreased, including Fbxo11-protein, adenylate kinase, beta-haemoglobin and dihydrolipoamide dehydrogenase, and 14 proteins being increased, including cvHSP, aldehyde reductase, desmin, vimentin, chaperonin, cardiac and muscle myosin heavy chain. This suggests that lack of sarcolemmal integrity triggers a generally perturbed protein expression pattern in dystrophin-deficient fibres. However, the most significant finding was the dramatic increase in the small heat shock protein cvHSP, which was confirmed by 2-D immunoblotting. Confocal fluorescence microscopy revealed elevated levels of cvHSP in MDX fibres. An immunoblotting survey of other key heat shock proteins showed a differential expression pattern in MDX diaphragm. Stress response appears to be an important cellular mechanism in dystrophic muscle and may be exploitable as a new approach to counteract muscle degeneration.  相似文献   

3.
Muscular dystrophy is a genetic disease that affects primarily skeletal muscle. The dystrophin absence has been related to the degeneration of muscle fibres. Indirect evidences suggest that oxidative stress may play a role in the pathogenesis of the disease, but the significance and precise extent of this contribution is poorly understood. In this paper we show that Becker Muscular Dystrophy (BMD) and Duchenne Muscular Dystrophy (DMD) skin fibroblasts are more susceptible to H2O2 treatment than are fibroblasts from unaffected persons. In particular, we found that, in growing DMD skin fibroblasts, the oxidative treatment resulted in significantly reduced growing capacity. We also investigated the concentrations of intracellular calcium during H2O2 treatment. The intracellular free calcium concentration increased by 22%, 35%, and 40% in unaffected, BMD, and DMD fibroblasts, respectively. However, the increase of the intracellular free calcium concentration is not related, as previously hypothesized, to a reduction of acylphosphatase concentrations, which seem to be unaffected by the H2O2 treatment, but rather to reduced enzyme activity.  相似文献   

4.
Duchenne muscular dystrophy (DMD) is a lethal disease caused by the lack of the cytoskeletal protein dystrophin. Altered calcium homoeostasis and increased calcium concentrations in dystrophic fibres may be responsible for the degeneration of muscle occurring in DMD. In the present study, we used subsarcolemmal- and mitochondrial-targeted aequorin to study the effect of the antiapoptotic Bcl-2 protein overexpression on carbachol-induced near-plasma membrane and mitochondrial calcium responses in myotubes derived from control C57 and dystrophic (mdx) mice. We show that Bcl-2 overexpression decreases subsarcolemmal and mitochondrial calcium overload that occurs during activation of nicotinic acetylcholine receptors in dystrophic myotubes. Moreover, our results suggest that overexpressed Bcl-2 protein may prevent near-plasma membrane and mitochondrial calcium overload by inhibiting IP3Rs (inositol 1,4,5-trisphosphate receptors), which we have shown previously to be involved in abnormal calcium homoeostasis in dystrophic myotubes. Most likely as a consequence, the inhibition of IP3R function by Bcl-2 also inhibits calcium-dependent apoptosis in these cells.  相似文献   

5.
R Gruener  L Z Stern  N Baumbach 《Life sciences》1975,17(10):1557-1565
Surgically denervated muscle exhibits increased sensitivity to acetylcholine and caffeine, and the acetylcholine contracture subsequent to preincubation with caffeine is greatly enhanced. The potentiation of the acetylcholine contracture derives, at least in part, from the direct action of caffeine on the muscle membrane resulting in an augmented and prolonged depolarization. The extent of potentiation depends on the duration of exposure to caffeine, is inhibited by increased extracellular calcium and is not present when cyclic AMP is substituted for caffeine.Biopsied human intercostal muscle shows high acetylcholine sensitivity in myotonic muscular dystrophy and motor neuron disease when compared to normal human or Duchenne dystrophic muscle. We suggest that myotonic dystrophy and motor neuron disease resemble surgical denervation more than Duchenne dystrophy does, and that in the former two diseases, as in denervated muscle, the acetylcholine sensitivity is increased with a concomitant abnormality in calcium-receptor interaction.  相似文献   

6.
Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstrates that enhanced reactive oxygen species (ROS) production by CYBB/NOX2 impairs autophagy in muscles from the dmd/mdx mouse, a genetic model of Duchenne muscular dystrophy. Statins decrease CYBB/NOX2 expression and activity and stimulate autophagy in skeletal muscle. Therefore, we treated dmd/mdx mice with simvastatin and showed decreased CYBB/NOX2-mediated oxidative stress and enhanced autophagy induction. This was accompanied by reduced muscle damage, inflammation and fibrosis, and increased muscle force production. Our data suggest that increased autophagy may be a potential mechanism by which simvastatin improves skeletal muscle health and function in muscular dystrophy.  相似文献   

7.
Duchenne muscular dystrophy is a severe muscle wasting disease caused by a mutation in the gene for dystrophin--a cytoskeletal protein connecting the contractile machinery to a group of proteins in the cell membrane. At the end stage of the disease there is profound muscle weakness and atrophy. However, the early stage of the disease is characterised by increased membrane permeability which allows soluble enzymes such as creatine kinase to leak out of the cell and ions such as calcium to enter the cell. The most widely accepted theory to explain the increased membrane permeability is that the absence of dystrophin makes the membrane more fragile so that the stress of contraction causes membrane tears which provide the increase in membrane permeability. However other possibilities are that increases in intracellular calcium caused by altered regulation of channels activate enzymes, such as phospholipase A(2), which cause increased membrane permeability. Increases in reactive oxygen species (ROS) are also present in the early stages of the disease and may contribute both to membrane damage by peroxidation and to the channel opening. Understanding the earliest phases of the pathology are critical to therapies directed at minimizing the muscle damage.  相似文献   

8.
Calpains are a ubiquitous, well-conserved family of calcium-dependent, cysteine proteases. Their function in muscle has received increased interest because of the discoveries that the activation and concentration of the ubiquitous calpains increase in the mouse model of Duchenne muscular dystrophy (DMD), but null mutations of muscle specific calpain causes limb girdle muscular dystrophy 2A (LGMD2A). These findings indicate that modulation of calpain activity contributes to muscular dystrophies by disrupting normal regulatory mechanisms influenced by calpains, rather than through a general, nonspecific increase in proteolysis. Thus, modulation of calpain activity or expression through pharmacological or molecular genetic approaches may provide therapies for some muscular dystrophies.  相似文献   

9.
Intracellular free calcium concentration [( Ca2+]i) of human peripheral blood lymphocytes was determined by fluorescence spectroscopic measurements with quin2 in patients with different types of muscular dystrophy and in controls. The [Ca2+]i level in lymphocytes showed a significant increase in adult type (facioscapulohumeral and limb-girdle) muscular dystrophies, while it showed a decrease in Duchenne dystrophy as compared to the values of age- and sex-matched controls. The data obtained suggest an alteration in the effectiveness of the calcium pump in lymphocytes and may represent a sign of generalized membrane damage in these hereditary muscle diseases.  相似文献   

10.
Muscular dystrophies are a clinically and genetically heterogeneous group of disorders that show myofiber degeneration and regeneration. Identification of animal models of muscular dystrophy has been instrumental in research on the pathogenesis, pathophysiology, and treatment of these disorders. We review our understanding of the functional status of dystrophic skeletal muscle from selected animal models with a focus on 1) the mdx mouse model of Duchenne muscular dystrophy, 2) the Bio 14.6 delta-sarcoglycan-deficient hamster model of limb-girdle muscular dystrophy, and 3) transgenic null mutant murine lines of sarcoglycan (alpha, beta, delta, and gamma) deficiencies. Although biochemical data from these models suggest that the dystrophin-sarcoglycan-dystroglycan-laminin network is critical for structural integrity of the myofiber plasma membrane, emerging studies of muscle physiology suggest a more complex picture, with specific functional deficits varying considerably from muscle to muscle and model to model. It is likely that changes in muscle structure and function, downstream of the specific, primary biochemical deficiency, may alter muscle contractile properties.  相似文献   

11.
The possibility of using bone marrow stem cells for treatment of Duchenne muscular dystrophy is intensely studied. Mdx mice are the most widely used laboratory model of Duchenne muscular dystrophy. One approach of cell therapy of muscular dystrophy is substitution of bone marrow in mdx mice after their X-ray irradiation. However, this method does not allow one to increase significantly dystrophin synthesis in muscular fibers of mdx mice. To improve the effect of transplanted cells on muscle regeneration, we additionally treated mdx mice subjected to transplantation of bone marrow cells with a weak combined magnetic field tuned to ion parametric resonance for Ca2+ (Ca2+-CMF). We found that, in irradiated chimeric 3 and 5 Gy mdx mice, additional treatment with Ca2+-CMF for 1 month resulted in significant increases in the portions of dystrophin-positive muscle fibers, by 15.8 and 18.3%, respectively, as compared to the control groups. Furthermore, the share of muscle fibers without centrally located nuclei also increased. We suggest that the magnetic field with these parameters may stimulate functioning of nuclei of donor cells, which were incorporated into muscle fibers.  相似文献   

12.
A lack of dystrophin results in muscle degeneration in Duchenne muscular dystrophy. Dystrophin-deficient human and mouse muscle cells have higher resting levels of intracellular free calcium ([Ca2+]i) and show a related increase in single-channel open probabilities of calcium leak channels. Elevated [Ca2+]i results in high levels of calcium-dependent proteolysis, which in turn increases calcium leak channel activity. This process could initiate muscle degeneration by further increasing [Ca2+]i and proteolysis in a positive feedback loop. Here, we tested the direct effect of restoration of dystrophin on [Ca2+]i and channel activity in primary myotubes from mdx mice made transgenic for full-length dystrophin. Transgenic mdx mice have been previously shown to have normal dystrophin localization and no muscle degeneration. Fura-2 calcium measurements and single-channel patch recordings showed that resting [Ca2+]i levels and open probabilities of calcium leak channels of transgenic mdx myotubes were similar to normal levels and significantly lower than mdx littermate controls (mdx) that lack dystrophin. Thus, restoration of normal calcium regulation in transgenic mdx mice may underlie the resulting absence of degeneration.  相似文献   

13.
Calpain is an intracellular nonlysosomal protease involved in essential regulatory or processing functions of the cell, mediated by physiological concentrations of Ca2+. However, in an environment of abnormal intracellular calcium, such as that seen in Duchenne muscular dystrophy (DMD), calpain is suggested to cause degeneration of muscle owing to enhanced activity. To test whether the reported increase in calpain activity in DMD results fromde novo synthesis of the protease, we have assessed the quantitative changes in mRNA specific for m-calpain. mRNA isolated from DMD and control muscle was analysed by dot blot hybridization using a cDNA probe for the large subunit of m-calpain. Compared to control a four-fold increase in specific mRNA was observed in dystrophic muscle. This enhanced expression of the m-calpain gene in dystrophic condition suggests that the reported increase in m-calpain activity results fromde novo synthesis of protease and underlines the important role of m-calpain in DMD.  相似文献   

14.
This review is primarily concerned with two key issues in research on dystrophin: (1) how the protein interacts with the plasma membrane of skeletal muscle fibres and (2) how an absence of dystrophin gives rise to Duchenne muscular dystrophy. In relation to the first point, we suggest that the post-translational acylation of dystrophin may contribute to its interaction with the plasma membrane. Regarding the second point, it is generally considered that an absence of dystrophin makes the plasma membrane susceptible to damage by contraction/relaxation cycles. In this connection, we propose that the progressive nature of Duchenne dystrophy, and the phenotypic characteristics of mdx mice, are more consistent with dystrophin functioning as a mechanical transducer that transmits growth stimuli from the enlarging skeleton to the muscle. On the basis of this hypothesis, dystrophin-deficient muscles would be unable to grow at the same rate as the skeleton.  相似文献   

15.
The cell biological hypothesis of Duchenne muscular dystrophy assumes that deficiency in the membrane cytoskeletal element dystrophin triggers a loss in surface glycoproteins, such as beta-dystroglycan, thereby rendering the sarcolemmal membrane more susceptible to micro-rupturing. Secondary changes in ion homeostasis, such as increased cytosolic Ca2+ levels and impaired luminal Ca2+ buffering, eventually lead to Ca2+-induced myonecrosis. However, individual muscle groups exhibit a graded pathological response during the natural time course of x-linked muscular dystrophy. The absence of the dystrophin isofom Dp427 does not necessarily result in a severe dystrophic phenotype in all muscle groups. In the dystrophic mdx animal model, extraocular and toe muscles are not as severely affected as limb muscles. Here, we show that the relative expression and sarcolemmal localization of the central trans-sarcolemmal linker of the dystrophin-glycoprotein complex, beta-dystroglycan, is preserved in mdx extraocular and toe fibres by means of two-dimensional immunoblotting and immunofluorescence microscopy. Thus, with respect to improving myology diagnostics, the relative expression levels of beta-dystroglycan appear to represent reliable markers for the severity of secondary changes in dystrophin-deficient fibres. Immunoblotting and enzyme assays revealed that mdx toe muscle fibres exhibit an increased expression and activity of the sarcoplasmic reticulum Ca2+-ATPase. Chemical crosslinking studies demonstrated impaired calsequestrin oligomerization in mdx gastrocnemius muscle indicating that abnormal calsequestrin clustering is involved in reduced Ca2+ buffering of the dystrophic sarcoplasmic reticulum. Previous studies have mostly attributed the sparing of certain mdx fibres to the special protective properties of small-diameter fibres. Our study suggests that the rescue of dystrophin-associated glycoproteins, and possibly the increased removal of cytosolic Ca2+ ions, might also play an important role in protecting muscle cells from necrotic changes.  相似文献   

16.
Nebulin and dystrophin are two high-molecular-mass skeletal muscle proteins that have both been associated with the defective gene in Duchenne muscular dystrophy, although the function of neither protein is known. Other high-molecular-mass, calmodulin-binding proteins have recently been implicated in regulating calcium release from skeletal muscle. Western blots of human skeletal muscle biopsy samples were probed with biotinylated calmodulin; nebulin was identified as a prominent high-molecular-mass calmodulin-binding protein but dystrophin did not bind detectable amounts of biotinylated calmodulin. Dystrophin was absent in a Duchenne muscle biopsy.  相似文献   

17.
The ionophore A23187 causes an increase in the Ca content of human erythrocytes and a Ca-dependent increase in K efflux (Gardos effect). These changes are associated with a reduction in osmotic fragility and cell size. Treatment of erythrocytes from patients with Duchenne muscular dystrophy with A23187 results in 45Ca uptake comparable to that of erythrocytes from control subjects. However, the reduction in osmotic fragility and K content observed in dystrophic erythrocytes is twofold greater than in control erythrocytes. These results indicate that an alteration in the regulation of erythrocyte membrane function by Ca occurs in Duchenne muscular dystrophy. This alteration may be responsible for other changes in erythrocyte membrane properties observed in Duchenne muscular dystrophy.  相似文献   

18.
Dystrophin, a 427 kD membrane-associated structural protein in muscle cells, is thought to confer strength to the myofiber sarcolemma and protect the membrane from rupture during the stresses of contraction. Dystrophin is absent in muscle cells from Duchenne muscular dystrophy (DMD) patients and mdx mice, a DMD model. Dystrophic muscle membranes undergo more frequent transient, nonlethal tears than normal cell membranes, especially during exercise. In addition, the mean open probability of a background (``leak') calcium channel is higher in dystrophic muscle cells, which leads to higher intracellular free calcium levels. Because elevated calcium levels may contribute to the eventual necrosis of muscle cells in DMD, we examined the possibility that the history of sarcolemmal rupture at a specific location on the membrane affects the open probability of nearby calcium leak channels. Membrane ruptures left by the excision of cell-attached patch-clamp electrodes were used to mimic natural tears. Patches made within 5 microns of excision sites contained channels with a fourfold greater mean open probability than channels in patches 50 μm away from ruptures. The increased leak channel activity near ruptures was seen continuously through the duration of the recordings and was not seen if the rupture was made in the presence of the protease inhibitor leupeptin. Calcium background channels proteolytically activated near ruptures, perhaps in a calcium-dependent manner, may thus be the lasting consequence of the weaker dystrophic sarcolemma, leading to chronically raised intracellular free calcium, increased calcium-dependent proteolysis and, eventually, necrosis. Received: 29 November 1999/Revised: 13 April 2000  相似文献   

19.
Summary Dystrophin is the product of the Duchenne muscular dystrophy (DMD) gene. Dystrophin-related protein (utrophin), an autosomal homologue of dystrophin, was studied in skeletal muscle from normal fetuses aged 9–26 weeks and one stillbirth of 41 weeks' gestation, and compared with low- and high-risk DMD fetuses aged 9–20 weeks. Utrophin was present at the sarcolemma from before 9 weeks' gestation, although there was variability in intensity both within and between myotubes. Sarcolemmal immunolabelling became more uniform, and levels of utrophin increased to a maximum at approximately 17–18 weeks. Levels then declined, until by 26 weeks sarcolemmal labelling was negligible and levels were similar to adult control muscle. By 41 weeks there was virtually no sarcolemmal labelling, although immunolabelling of capillaries was bright. Similar results were obtained with normal and DMD fetal muscle. Utrophin is therefore expressed in the presence and absence of dystrophin and down-regulated before birth in normal fetal muscle fibres. Samples were not available to determine whether or when, utrophin levels decline in DMD fetal muscle. On Western blots, utrophin was shown to have a smaller relative molecular mass than adult dystrophin, but similar to the fetal isoform. Blood vessels were brightly immunolabelled at all ages, although utrophin immunolabelling of peripheral nerves increased with gestational age.  相似文献   

20.
A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号