首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
p105 (NFKB1) acts in a dual way as a cytoplasmic IkappaB molecule and as the source of the NF-kappaB p50 subunit upon processing. p105 can form various heterodimers with other NF-kappaB subunits, including its own processing product, p50, and these complexes are signal responsive. Signaling through the IkappaB kinase (IKK) complex invokes p105 degradation and p50 homodimer formation, involving p105 phosphorylation at a C-terminal destruction box. We show here that IKKbeta phosphorylation of p105 is direct and does not require kinases downstream of IKK. p105 contains an IKK docking site located in a death domain, which is separate from the substrate site. The substrate residues were identified as serines 923 and 927, the latter of which was previously assumed to be a threonine. S927 is part of a conserved DSGPsi motif and is functionally most critical. The region containing both serines is homologous to the N-terminal destruction box of IkappaBalpha, -beta, and -epsilon. Upon phosphorylation by IKK, p105 attracts the SCF E3 ubiquitin ligase substrate recognition molecules betaTrCP1 and betaTrCP2, resulting in polyubiquitination and complete degradation by the proteasome. However, processing of p105 is independent of IKK signaling. In line with this and as a physiologically relevant model, lipopolysaccharide (LPS) induced degradation of endogenous p105 and p50 homodimer formation, but not processing in pre-B cells. In mutant pre-B cells lacking IKKgamma, processing was unaffected, but LPS-induced p105 degradation was abolished. Thus, a functional endogenous IKK complex is required for signal-induced p105 degradation but not for processing.  相似文献   

2.
The processing of the nfkappab2 gene product p100 to generate p52 is a regulated event, which is important for the instrumental function of NF-kappaB. We previously demonstrated that this tightly controlled event is regulated positively by NF-kappaB-inducing kinase (NIK) and its downstream kinase, IkappaB kinase alpha (IKKalpha). However, the precise mechanisms by which NIK and IKKalpha induce p100 processing remain unclear. Here, we show that, besides activating IKKalpha, NIK also serves as a docking molecule recruiting IKKalpha to p100. This novel function of NIK requires two specific amino acid residues, serine 866 and serine 870, of p100 that are known to be essential for inducible processing of p100. We also show that, after being recruited into p100 complex, activated IKKalpha phosphorylates specific serines located in both N- and C-terminal regions of p100 (serines 99, 108, 115, 123, and 872). The phosphorylation of these specific serines is the prerequisite for ubiquitination and subsequent processing of p100 mediated by the beta-TrCP ubiquitin ligase and 26 S proteasome, respectively. These results highlight the critical but different roles of NIK and IKKalpha in regulating p100 processing and shed light on the mechanisms mediating the tight control of p100 processing. These data also provide the first evidence for explaining why overexpression of IKKalpha or its activation by many other stimuli such as tumor necrosis factor and mitogens fails to induce p100 processing.  相似文献   

3.
The p105 precursor protein of NF-kappaB1 acts as an NF-kappaB inhibitory protein, retaining associated Rel subunits in the cytoplasm of unstimulated cells. Tumor necrosis factor alpha (TNFalpha) and interleukin-1alpha (IL-1alpha) stimulate p105 degradation, releasing associated Rel subunits to translocate into the nucleus. By using knockout embryonic fibroblasts, it was first established that the IkappaB kinase (IKK) complex is essential for these pro-inflammatory cytokines to trigger efficiently p105 degradation. The p105 PEST domain contains a motif (Asp-Ser(927)-Gly-Val-Glu-Thr), related to the IKK target sequence in IkappaBalpha, which is conserved between human, mouse, rat, and chicken p105. Analysis of a panel of human p105 mutants in which serine/threonine residues within and adjacent to this motif were individually changed to alanine established that only serine 927 is essential for p105 proteolysis triggered by IKK2 overexpression. This residue is also required for TNFalpha and IL-1alpha to stimulate p105 degradation. By using a specific anti-phosphopeptide antibody, it was confirmed that IKK2 overexpression induces serine 927 phosphorylation of co-transfected p105 and that endogenous p105 is also rapidly phosphorylated on this residue after TNFalpha or IL-1alpha stimulation. In vitro kinase assays with purified proteins demonstrated that both IKK1 and IKK2 can directly phosphorylate p105 on serine 927. Together these experiments indicate that the IKK complex regulates the signal-induced proteolysis of NF-kappaB1 p105 by direct phosphorylation of serine 927 in its PEST domain.  相似文献   

4.
Selective degradation of the IκB kinase (IKK) by autophagy   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(11):855-856
Proteasome-mediated degradation and autophagy are the two major pathways mediating the turnover of cellular proteins. The proteasomal pathway is known to be a highly specific and regulated process mediating the degradation of short-lived proteins such as many important factors involved in cellular signaling. In contrast, it is generally thought that autophagy is rather nonselective as it is responsible for the bulk degradation of long-lived proteins and organelles. Challenging this general view, in this issue of Cell Research, Qing et al. report that selective degradation of the IκB kinase (IKK) triggered by the loss of Hsp90 function is mediated by autophagy [1].  相似文献   

5.
We discovered a stem cell factor (SCF)-triggered, MEK1-independent, and PI3K-dependent MAPK activation pathway in the Kit-expressing ovarian cancer cell line HEY. When we knocked down MEK1 with RNA interference (RNAi) to study the function of MEK1 on the proliferation and survival of ovarian cancer cells, we found that impaired cell growth still occurred after MEK1 expression had been suppressed, although MAPK activation remained intact. This suggests that there is MEK1-independent activation of MAPK in the SCF-induced ovarian cancer cell growth process, and that MEK1 still plays a crucial role in maintaining the malignant properties of ovarian cancer cells even when it fails to activate MAPK as expected.  相似文献   

6.
7.
Acute alcohol use is associated with impaired immune responses and decreased proinflammatory cytokine production. Our earlier studies have shown that acute alcohol intake inhibits NF-kappaB DNA binding in an IkappaBalpha-independent manner. We report using human peripheral blood monocytes and Chinese hamster ovary cells transfected with CD14 cells that acute alcohol treatment in vitro exerts NF-kappaB inhibition by disrupting phosphorylation of p65. Immunoprecipitation of p65 and IkappaBalpha revealed that acute alcohol exposure for 1 h decreased NF-kappaB-IkappaBalpha complexes in the cytoplasm. Phosphorylation of p65 at Ser(536) is mediated by IkappaB kinase (IKK)beta and is required for NF-kappaB-dependent cellular responses. We show that acute alcohol treatment decreased LPS-induced IKKalpha and IKKbeta activity resulting in decreased phosphorylation of p65 at Ser(536). Furthermore, nuclear expression of IKKalpha increased after alcohol treatment, which may contribute to inhibition of NF-kappaB. Decreased phosphorylation of nuclear p65 at Ser(276) was likely not due to alcohol-induced inhibition of protein kinase A and mitogen- and stress-activated protein kinase-1 activity. Although decreased IkappaBalpha phosphorylation after acute alcohol treatment was attributable to reduced IKKbeta activity, degradation of IkappaBalpha during alcohol exposure was IKKbeta-independent. Alcohol-induced degradation of IkappaBalpha in the presence of a 26S proteasome inhibitor suggested proteasome-independent IkappaBalpha degradation. Collectively, our studies suggest that acute alcohol exposure modulates IkappaBalpha-independent NF-kappaB activity primarily by affecting phosphorylation of p65. These findings further implicate an important role for IKKbeta in the acute effects of alcohol in immune cells.  相似文献   

8.
9.
The SCF ubiquitin ligases catalyze protein ubiquitination in diverse cellular processes. SCFs bind substrates through the interchangeable F box protein subunit, with the >70 human F box proteins allowing the recognition of a wide range of substrates. The F box protein beta-TrCP1 recognizes the doubly phosphorylated DpSGphiXpS destruction motif, present in beta-catenin and IkappaB, and directs the SCF(beta-TrCP1) to ubiquitinate these proteins at specific lysines. The 3.0 A structure of a beta-TrCP1-Skp1-beta-catenin complex reveals the basis of substrate recognition by the beta-TrCP1 WD40 domain. The structure, together with the previous SCF(Skp2) structure, leads to the model of SCF catalyzing ubiquitination by increasing the effective concentration of the substrate lysine at the E2 active site. The model's prediction that the lysine-destruction motif spacing is a determinant of ubiquitination efficiency is confirmed by measuring ubiquitination rates of mutant beta-catenin peptides, solidifying the model and also providing a mechanistic basis for lysine selection.  相似文献   

10.
The p50 subunit of NF-kappaB is generated by limited processing of the precursor p105. IkappaB kinase-mediated phosphorylation of the C-terminal domain of p105 recruits the SCF(beta-TrCP) ubiquitin ligase, resulting in rapid ubiquitination and subsequent processing/degradation of p105. NEDD8 is known to activate SCF ligases following modification of their cullin component. Here we show that NEDDylation is required for conjugation and processing of p105 by SCF(beta-TrCP) following phosphorylation of the molecule. In a crude extract, a dominant negative E2 enzyme, UBC12, inhibits both conjugation and processing of p105, and inhibition is alleviated by an excess of WT- UBC12. In a reconstituted cell-free system, ubiquitination of p105 was stimulated only in the presence of all three components of the NEDD8 pathway, E1, E2, and NEDD8. A Cul-1 mutant that cannot be NEDDylated could not stimulate ubiquitination and processing of p105. Similar findings were observed also in cells. It should be noted that NEDDylation is required only for the stimulated but not for basal processing of p105. Although the mechanisms that underlie processing of p105 are largely obscure, it is clear that NEDDylation and the coordinated activity of SCF(beta-TrCP) on both p105 and IkappaBalpha serve as an important regulatory mechanism controlling NF-kappaB activity.  相似文献   

11.
Qing G  Yan P  Xiao G 《Cell research》2006,16(11):895-901
Autophagic and proteasomal proteolysis are two major pathways for degradation of cellular constituents. Current models suggest that autophagy is responsible for the nonselective bulk degradation of long-lived proteins and organelles while the proteasome specifically degrades short-lived proteins including misfolded proteins caused by the absence of Hsp90 function. Here, we show that the IκB kinase (IKK), an essential activator of NF-κB, is selectively degraded by autophagy when Hsp90 is inhibited by geldanamycin (GA), a specific Hsp90 inhibitor showing highly effective anti-tumor activity. We find that in this case inactivation of ubiquitination or proteasome fails to block IKK degradation. However, inhibition of autophagy by an autophagy inhibitor or knockout of Atg5, a key component of the autophagy pathway, significantly rescues IKK from GA-induced degradation. These findings provide the first evidence that an Hsp90 client may be degraded by a mechanism different from the proteasome pathway and establish a molecular link among Hsp90, NF-κB and autophagy  相似文献   

12.
Molecular and Cellular Biochemistry - Previous works revealed the presence of a Ca2+-dependent protein kinase (p60) and a Ca2+-independent protein kinase (p105) in the mantle tissue from the sea...  相似文献   

13.
14.
The Nf2 tumor suppressor gene product merlin is related to the membrane-cytoskeleton linker proteins of the band 4.1 superfamily, including ezrin, radixin, and moesin (ERMs). Merlin is regulated by phosphorylation in a Rac/cdc42-dependent fashion. We report that the phosphorylation of merlin at serine 518 is induced by the p21-activated kinase PAK2. This is demonstrated by biochemical fractionation, use of active and dominant-negative mutants of PAK2, and immunodepletion. By using wild-type and mutated forms of merlin and phospho-directed antibodies, we show that phosphorylation of merlin at serine 518 leads to dramatic protein relocalization.  相似文献   

15.
7-Ketocholesterol (7kchol) is prominent in atherosclerotic lesions where apoptosis occurs. Using mouse fibroblasts lacking p53, p21(waf1), or Stat1, we found that optimal 7kchol-induced apoptosis requires p21(waf1) and Stat1 but not p53. Findings were analogous in a human cell system. Apoptosis was restored in Stat1-null human cells when wild-type Stat1 was restored. Phosphorylation of Stat1 on Ser(727) but not Tyr(701) was essential for optimum apoptosis. A neutralizing antibody against beta interferon (IFN-beta) blunted Ser(727) phosphorylation and apoptosis after 7kchol treatment; cells deficient in an IFN-beta receptor subunit exhibited blunted apoptosis. IFN-beta alone did not induce apoptosis; thus, 7kchol-induced release of IFN-beta was necessary but not sufficient for optimal apoptosis. In Stat1-null cells, expression of p21(waf1) was much less than in wild-type cells; introducing transient expression of p21(waf1) restored apoptosis. Stat1 and p21(waf1) were essential for downstream apoptotic events, including cytochrome c release from mitochondria and activation of caspases 9 and 3. Our data reveal key elements of the cellular pathway through which an important oxysterol induces apoptosis. Identification of the essential signaling events that may pertain in vivo could suggest targets for therapeutic intervention.  相似文献   

16.
Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 μm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.  相似文献   

17.
The mechanistic relationship of phosphorylation of the C terminus of IKKbeta with phosphorylation of its T-loop kinase domain within the IKK complex remained unclear. We investigated the regulatory role of the serine cluster residing immediately adjacent to the HLH domain and of the serines in the NEMO/IKKgamma-binding domain (NBD/gammaBD) in the C-terminal portion of IKKbeta in MEFs deficient in IKKbeta and IKKalpha and in yeast reconstitution system. We show that phosphorylation events at the C terminus of IKKbeta can be divided into autophosphorylation of the serine cluster adjacent to the HLH domain and phosphorylation of the NBD/gammaBD. Autophosphorylation of the serine cluster occurs immediately after IKK activation and requires IKKgamma. In MEFs, this autophosphorylation does not have the down-regulatory function on the IKK complex that was previously described (1). On the other hand, phosphorylation of the NBD/gammaBD regulates IKKgamma-dependent phosphorylation of the T-loop activation domain in IKKbeta and, hence, IKK complex activation. Our study suggests that, within the IKK complex, modulation of the NBD/gammaBD by IKKgamma is upstream to the T-loop phosphorylation.  相似文献   

18.
Activation of death-associated protein kinase (DAPK) occurs via dephosphorylation of Ser-308 and subsequent association of calcium/calmodulin. In this study, we confirmed the existence of the alternatively spliced human DAPK-beta, and we examined the levels of DAPK autophosphorylation and DAPK catalytic activity in response to tumor necrosis factor or ceramide. It was found that DAPK is rapidly dephosphorylated in response to tumor necrosis factor or ceramide and then subsequently degraded via proteasome activity. Dephosphorylation and activation of DAPK are shown to temporally precede its subsequent degradation. This results in an initial increase in kinase activity followed by a decrease in DAPK expression and activity. The decline in DAPK expression is paralleled with increased caspase activity and cell apoptosis. These results suggest that the apoptosis regulatory activities mediated by DAPK are controlled both by phosphorylation status and protein stability.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号