首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Microbial transformation of labile, low molecular weight dissolved organic matter (DOM) into dissolved humic matter (DHM) was studied in seawater. Surface water samples were amended with [14C into 14CO2, TO14C (total organic 14C), and PO14C (particulate organic 14C), was measured over time in confined samples. The humic and non-humic fractions of DO14C (dissolved organic 14C) were separated according to a common operational definition of DHM based on adsorption on XAD-8 macroporous resin. Both TO14C and non-humic DO14C decreased during the experiments. However, 14C-labelled DHM increased during the first week of the incubations, to a level where it comprised 15% of the TO14C remaining in the samples, or 3% of the initially added 14C. Towards the end of experiments (ca 70 days), the humic fraction of DO14C gradually approached the background level of poisoned control samples. Provided that the XAD-8 operational definition of DHM is accepted, this study indicates that humic matter may be formed in seawater within days from labile monomers such as glucose.  相似文献   

2.
Abstract: Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36°C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1–10 m M ), lactate (1–10 m M ), [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U-14C]glucose, and glucose reduced that from [U-14C]lactate. When using uniformly labeled substrates in the presence of 5.5 m M glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was >2 m M . The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1-14C]glucose always exceeded that from [6-14C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.  相似文献   

3.
Abstract: Synaptosomes from normoxic and hypoxic rats were incubated aerobically in the presence and absence of veratridine. In the absence of veratridine, no significant difference was observed between the two types of preparation regarding either ATP/ADP ratio or 14CO2 or [14C]acetylcholine synthesis from D-[U-14C]glucose. However, in the presence of veratridine, significant reductions in the output of 14CO2 and [14C]acetylcholine by synaptosomes from hypoxic rats were apparent. It was concluded that irreversible metabolic lesions occur at the synapse as a result of hypoxia, which are apparent only when the metabolism of the preparation is accelerated to a level comparable with the maximal rate occurring in vivo. The presence of such lesions is further evidenced by the significant reductions in ATP/ADP ratio, 14CO2 output, and [14C]acetylcholine synthesis that occur in synaptosomes from hypoxic rats made anoxic in vitro and permitted to recover. Such decreases are not seen when synaptosomes from normoxic rats are similarly treated.  相似文献   

4.
Abstract– 14CO2 production and 14C incorporation into proteins was studied in isolated rat sciatic nerves during incubation with 0.1 mM-[1-14C]leucine. Rats were made diabetic with streptozotocin. Nerves from diabetic rats incubated with glucose oxidized more [14C]leucine than controls. This difference was abolished in the presence of insulin (1 mU/ml). The effects of diabetes and insulin on leucine oxidation could not be demonstrated in the absence of glucose. Insulin stimulated the incorporation of [14C] from leucine into proteins by nerves from controls and diabetic rats.
Nerves undergoing Wallerian degeneration showed a marked increase in DNA content and stimulated incorporation of [14C]leucine into proteins. 14CO2 production from leucine proceeded at 75% of the rate observed in intact nerves. Neither insulin nor diabetes affected leucine metabolism in degenerating nerves.
Neither the extracellular space nor the concentration of free amino acids were significantly different in nerves obtained from control and diabetic rats, except for lower glutamine content in the latter.
In vitro leucine metabolism of nerves is affected by diabetes, insulin and the integrity of the axon. The Schwann cell is suggested as a possible site of the observed changes in leucine metabolism.  相似文献   

5.
Methanolic extracts of Zea mays L. cv. Fronica root segments which had been incubated in [14C] indole-3-acetie acid were analysed by reverse-phase high-performance liquid chromatography. Metabolism of indole-3-acetic acid was found to be rapid and extensive with at least 11 products apparent after a 2 h incubation. A comparison of metabolites of [1-14C]– and [2-14C] IAA, calculations of 14CO2 evolution, and data on the polarity of products indicated that decarboxylation had not occurred. An average of 34% of the radioactivity remained associated with the indole-3-acetic acid peak.  相似文献   

6.
Abstract: Production of [14C]acetylcholine and 14CO2 was examined by using tissue prisms from neocortex, hippocampus, and striatum from rats aged approximately 5 months, 13 months, and 27 months. [14C]Acetylcholine synthesis in the striatum showed highly significant decreases with age for measurements in the presence of both 5 m m - and 31 m m -K+, contrasting with the lack of significant change in 14CO2 production in this region. The neocortex and hippocampus showed only small changes, especially when comparison was made between 13-month and senescent animals. Measurements of the release of [14C]acetylcholine and influence of atropine on this release confirmed the relative stability with age of the cholinergic system in the neocortex.  相似文献   

7.
L-GLUTAMIC ACID DECARBOXYLASE IN NON-NEURAL TISSUES OF THE MOUSE   总被引:7,自引:5,他引:2  
Abstract— Low levels of γ-aminobutyric acid (GABA) and of glutamic acid decarboxylase (GAD) activity have been detected in mouse kidney, liver, spleen and pancreas. Quantitation of both 14CO2 and [14C]GABA produced in radiometric assays from [U-14CJglutamic acid has shown that measurement of 14CO2 evolution alone is not, in all cases, a valid estimate of true GAD activity. As evidenced by increased ,14CO2 production upon addition of NAD and CoA to assay mixtures, radiometric assay of GAD activity in crude homogenates may yield 14CO2 via the coupled reactions of glutamic acid dehydrogenase and a-ketoglutarate dehydrogenase. The addition of 1 mM aminooxyacetic acid (AOAA) to assays of kidney homogenates inhibited [,14C]GABA production 92 per cent while 14CO2 production was inhibited only 53 per cent. No evidence was found to confirm the reported existence of a second form of the enzyme, GAD II. previously described by Haber el al. (H aber B., K uriyama K. & R oberts E. (1970) Biochem. Pharmac. 19, 1119-1136). Based on sensitivity-to AOAA and chloride inhibition, the GAD activity in mouse kidney is. apparently, indistinguishable from that of neural origin.  相似文献   

8.
Abstract— Glucose metabolism in the superior cervical ganglion for calves has been studied by incubating slices with [1-14C]-, [6-14C]- and [U-14C]-labelled glucose at 37°C and pH 7.4. Glucose utilization and the metabolic partitioning of glucose carbon in products during different incubation periods ranging from 5 to 60 min were determined by isotopic methods.
Separation and identification of labelled compounds have been achieved by anion and cation exchange chromatography as well as by TLC and enzymatic analyses.
From the data obtained a carbon balance could be constructed showing lactate to be the major product of glucose metabolism followed by CO2 and amino acids. Measuring the release of 14CO2 from differently 4C-labelled glucose, the existence of an active pentose phosphate pathway in the ganglion could be demonstrated although this pathway seems to contribute only to a small extent to glucose metabolism. The marked decrease of the C-U: C-6 and the C-U:C-1 ratios in 14CO2 observed in the course of incubation is discussed in terms of a time-dependent change in the rate of synthesis of amino acids which are directly connected with intermediates of the citric acid cycle.  相似文献   

9.
Rotenone-sensitive 14CO2 formation from [14C]lactate and oxygen consumption by round spermatids were found to be greater at elevated temperatures than at 34°C. More than 96% of the total radioactivity of the metabolized [14C]lactate was recovered in the released CO2 and the acid soluble fraction of the cells. There was practically no incorporation of [14C]latctate into the lipid, nucleic acid, and protein fractions. Intracellular level of ATP in spermatids was enhanced in the presence of lactate (20 mM) at 34°C (scrotal temperature), whereas it was decrease at 37°C (body temperature). However, this was reversible when the cells were transferred from the elevated temperature to 34°C. It was also found that oxygen consumption and CO2 production were increased at 34°C by 2, 4-dinitrophenol (DNP), but decreased by oligomycin. On the other hand, oligomycin and DNP had no effect on oxygen consumption and 14CO2 formation at the elevated temperature.
These findings provide evidence that lactate utilization by spermatids is coupled with oxidative phosphorylation at scrotal temperature, but becomes uncoupled at elevated temperature, although more lactate is consumed.  相似文献   

10.
Abstract: We studied the effects of denervation and reinnervation of the rat extensor digitorum longus muscle (EDL) on the oxidation of [6-14C]glucose to 14CO2. The rate of 14CO2 production decreased dramatically following denervation, and the decrease became significant 20 days after nerve section. Prior to day 20, changes apparently reflected the decline of muscle mass. Decreased 14CO2 production was due to reduced capacity of the enzymatic system (apparent Vmax); there was no change in apparent affinity for glucose (apparent K m). Mixing experiments revealed that the loss of oxidative capacity following denervation is not caused by production of soluble inhibitors by degenerating muscle. Oxidative metabolism, as measured by 14CO2 evolution, recovered during reinnervation. Surprisingly, the specific activity in reinnervated muscles displayed an "overshoot" of approximately 50%, which returned to control by day 60, possibly reflecting increased energy demand by the growing muscle. The time-course of the denervation-mediated change indicates that altered oxidative capacity is secondary to events that initiate denervation changes in muscle. Nevertheless, diminished oxidative capacity may be of considerable metabolic significance in denervated muscle.  相似文献   

11.
Mesophyll cells isolated from Phaseolus vulgaris and Lycopersicon esculentum show decreasing photosynthetic rates when suspended in media containing increasing concentrations of osmoticum. The photosynthetic activity was sensitive to small changes in osmotic potential over a range of sorbitol concentrations from 0.44 M (−1.08 MPa) to 0.77 M (−1.88 MPa). Photorespiration assayed by 14CO2 release in CO2-free air and by 14CO2 release from the oxidation of [1–14C] glycolate also decreased as the osmotic potential of the incubation medium was reduced. The CO2 compensation points of the cells increased with increasing concentration of osmoticum from approximately 60 μ I−11 at −1.08 MPa to 130 μl 1−1 for cells stressed at −1.88 MPa. Changes in photosynthetic and photorespiratory activities occurred at moderate osmotic potentials in these cells suggesting that in whole leaves during a reduction in water potential, non- stomatal inhibition of CO2 assimilation and glycolate pathway metabolism occurs simultaneously with stomatal closure.  相似文献   

12.
By use of the radiolabelled substrates sodium [1–14C] acetate, sodium [2–14C] acetate, NaH14CO3 and 14CH3OH, three of the possible methanogenic pathways in fermenting refuse were confirmed. Due to the absence of a methanol pool, however, the relative contribution of each could not be determined. Circumstantial evidence for an operative trimethylamine pathway was gained but not confirmed whilst preliminary attempts to stimulate methanogenesis in refuse by supplementation with mono-and dimethylamine proved unsuccessful.  相似文献   

13.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1, (3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-: 14C]alanine, [1-14C]glutamate, and [1, (3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate, [1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

14.
The regulation of whole-plant resource allocation during seed development in Arabidopsis thaliana was investigated by examining growth rate and partitioning of 14CO2 in wild-type plants and those carrying the abi3 mutation. Plants carrying the abi3 mutation partitioned more resources into seed development than the wild type. The extra resources were available as a result of delayed senescence of the cauline leaves in the mutant. After supply of 14CO2 at later stages of reproductive development differences in patterns of 14C distribution between mutant and wild type were consistent with long-term changes in growth and allocation. The role of long-distance signals in the regulation of seed yield in Arabidopsis is discussed.  相似文献   

15.
Background. The mouse model using a human isolate of Helicobacter pylori is being widely accepted as an economical means of studying gastric infection. A noninvasive monitoring method would be useful for repeated testing to establish the time course of infection and the efficacy of treatments. In this study, we describe factors that affect interpretation of 13C urea breath test results for the assessment of H. pylori infection status in this model.
Materials and Methods. Female C57Bl/6 mice that underwent gavage with H. pylori or saline were breath-tested using 50 μg of 13C urea at intervals up to 2 months after inoculation. The generation of 13CO2 (excess δ13CO2) by infected mice was compared to that of uninfected controls. The effects of diet, fasting, and coprophagy on the reliability of the 13C urea breath test were quantitated.
Results. Both commercial and synthetic mouse diets exhibited marked in vitro urease activity. A minimum fasting time of 13 hours prior to breath testing significantly reduced this dietary contribution to excess δ13CO2 values. The coprophagic tendency of the mice caused spuriously high excess δ13CO2 counts in the breath of both control and H. pylori –infected mice.
Conclusions. Although the dietary contribution to spuriously high values of excess δ13CO2 in mice breath-tested for H. pylori infection was reduced by fasting, the high nonspecific urease activity generated by coprophagy severely limited the reliability of the urea breath test in the assessment of H. pylori infection status.  相似文献   

16.
The ability of chloroplasts to synthesize aromatic amino acids from CO2 was investigated using highly purified, intact spinach ( Spinacia oleracea L. cv. Viking II) chloroplasts and 14CO2. Incorporation of 14C into aromatic amino acids was very low, however, and this was assumed to be due to lack of phosphoenolpyruvate (PEP), one of the substrates for the shikimate/arogenate pathway leading to aromatic amino acids in chloroplasts. Therefore, the glycolytic enzymes phosphoglycerate mutase (EC 2.7.5.3) and enolase (EC 4.2.1.11) were added to the 14CO2 fixation medium in order to convert labelled 3-phosphoglycerate exported from the intact chloroplasts to 2-phosphoglycerate and PEP. In this way a part of the glycolytic pathway was reconstituted outside the chloroplasts to substitute for the cytoplasm lost on isolation. The presence of both enzymes in the medium increased incorporation of 14C into Tyr and Phe more than ten-fold and incorporation into Trp about two-fold, while total 13CO2 fixation rates were not affected. Our results suggest that chloroplasts do not contain phosphoglycerate mutase or enolase, and that, in vivo, PEP is synthesized in the cytoplasm and imported to the chloroplast stroma for the biosynthesis of aromatic amino acids. The biosynthesis of all three aromatic amino acids was under feedback control. Using expected physiological concentrations (below 100 μ M ), each of the aromatic amino acids exerted a strict feedback inhibition of its own biosynthesis only.  相似文献   

17.
S ummary : Growth in soils of Mycobacterium paraffinicum with 0, 5, 15, 45 and 270 p/m of ethane was assayed by adding ethane-1,2-14C and measuring the 14CO2 produced. With < 45 p/m of ethane the lag period lasted several months. Differences in growth associated with different soils suggest that the microbial method of oil prospecting is unlikely to be commercially successful.  相似文献   

18.
14CO2 evolution of prelabeled Scenedesmus obliquus Kütz, has been followed in the dark and in the light. In the light, no carbon dioxide is evolved. Addition of unlabeled NaHCO, leads to 14CO2 release attaining 20 to 30% of the dark rate. Double-reciprocal plots of NaHCO3 concentrations vs 14CO2 release results in a straight line, indicative of competition between exogenously supplied bicarbonate and endogenously evolved carbon dioxide. With this method, it is possible to measure CO2 evolved by respiration in the light and to show that true photoinhibition of respiration occurs in Scenedesmus . In the light. DCMU substantially increases 14CO2 evolution; in the presence of the uncoupler carbonyl cyanide- m -chlorophenylhydrazone. 14CO2 evolution is comparable to that in the dark. 14CO2 release and oxygen uptake in the dark are only slightly affected by cyanide, indicative of a cyanide-resistant respiration and/or fermentation as the essential CO2-yielding processes in the presence of cyanide. These results, compared with concurrent ATP levels, lead us to assume that energy charge is not the only factor responsible for photoinhibition of respiration.  相似文献   

19.
Abstract: White-rot fungi produce extracellular lignin-modifying enzymes, the best characterized of which are laccase (EC 1.10.3.2), lignin peroxidases (EC 1.11.1.7) and manganese peroxidases (EC 1.11.1.7). Lignin biodegradation studies have been carried out mostly using the white-rot fungus Phanerochaete chrysosporium which produces multiple isoenzymes of lignin peroxidase and manganese peroxidase but does not produce laccase. Many other white-rot fungi produce laccase in addition to lignin and manganese peroxidases and in varying combinations. Based on the enzyme production patterns of an array of white-rot fungi, three categories of fungi are suggested: (i) lignin-manganese peroxidase group (e.g. P. chrysosporium and Phlebia radiata ), (ii) manganese peroxidase-laccase group (e.g. Dichomitus squalens and Rigidoporus lignosus ), and (iii) lignin peroxidase-laccase group (e.g. Phlebia ochraceofulva and Junghuhnia separabilima ). The most efficient lignin degraders, estimated by 14CO2 evolution from 14C-[Ring]-labelled synthetic lignin (DHP), belong to the first group, whereas many of the most selective lignin-degrading fungi belong to the second, although only moderate to good [14C]DHP mineralization is obtained using fungi from this group. The lignin peroxidase-laccase fungi only poorly degrade [14C]DHP.  相似文献   

20.
SYNTHESIS AND RELEASE OF [14C]ACETYLCH0LINE IN SYNAPTOSOMES   总被引:4,自引:2,他引:2  
Abstract— Synaptosomes took up [14C]choline, about half or more of which was converted to [I4C]acetylcholine when incubated in an appropriate medium containing 1 to 5 μ M-[14C] choline and neostigmine. The amount of [14C]acetylcholine synthesized in synaptosomes increased in parallel with the increase of Na+ concentration in the incubation medium. The effect of Na+ on the uptake of [I4C]choline into synaptosomes was dependent on the concentration of choline in the incubation medium.
About 25 per cent of [14C]acetylcholine synthesized in synaptosomes was released rapidly into the medium by increasing the K+ concentration in the medium from 5 m m to 35 m m . The change of Na+ concentration hardly affected the release of [14C]acetylcholine. The effect of K+ on the release of [14C]choline was rather small compared to that on [14C] acetylcholine. Ouabain promoted the release of [14C]acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号