首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysis of Escherichia coli by the cloned E protein of bacteriophage phi X174 was more rapid than expected when bacteria were shifted from 30 to 42 degrees C at the time of E induction. Since such treatment also induces the heat shock response, we investigated the effect of heat shock proteins on lysis. An rpoH mutant was more sensitive to lysis by E, but a secondary suppressor mutation restored lysis resistance to parental levels, which suggests that the sigma 32 subunit itself did not directly increase lysis resistance. At 30 degrees C, mutants in five heat shock genes (dnaK, dnaJ, groEL, groES, and grpE) were more sensitive to lysis than were their wild-type parents. The magnitude of lysis sensitivity varied with mutation and strain background, with dnaK, dnaJ, and groES mutants consistently exhibiting the greatest sensitivities. Extended protection against lysis occurred when overproduction of heat shock proteins was induced artificially in cells that contained a plasmid with the rpoH+ gene under control of the tac promoter. This protective effect was completely abolished by mutations in dnaK, dnaJ, or groES but not by grpE or groEL mutations. Altered membrane behavior probably explains the contradiction whereby an actual temperature shift sensitized cells to lysis, but production of heat shock proteins exhibited protective effects. The results demonstrate that E-induced lysis can be divided into two distinct operations which may now be studied separately. They also emphasize a role for heat shock proteins under non-heat-shock conditions and suggest cautious interpretation of lysis phenomena in systems where E protein production is under control of a temperature-sensitive repressor.  相似文献   

2.
The heat shock proteins (HSPs) of Escherichia coli were artificially induced in cells containing the wild-type rpoH+ gene under control of a tac promoter. At 30 degrees C, expression of HSPs produced cells that were resistant to lysis by cephaloridine and cefsulodin, antibiotics that bind penicillin-binding proteins (PBPs) 1a and 1b. This resistance could be reversed by the simultaneous addition of mecillinam, a beta-lactam that binds PBP 2. However, even in the presence of mecillinam, cells induced to produce HSPs were resistant to lysis by ampicillin, which binds all the major PBPs. Lysis of cells induced to produce HSPs could also be effected by imipenem, a beta-lactam known to lyse nongrowing cells. These effects suggest the existence of at least two pathways for beta-lactam-dependent lysis, one inhibited by HSPs and one not. HSP-mediated lysis resistance was abolished by a mutation in any one of five heat shock genes (dnaK, dnaJ, grpE, GroES, or groEL). Thus, resistance appeared to depend on the expression of the complete heat shock response rather than on any single HSP. Resistance to lysis was significant in the absence of the RelA protein, implying that resistance could not be explained by activation of the stringent response. Since many environmental stresses promote the expression of HSPs, it is possible that their presence contributes an additional mechanism toward development in bacteria of phenotypic tolerance to beta-lactam antibiotics.  相似文献   

3.
Variants of Bacillus subtilis resistant to the detergent Triton X-100 may exhibit: (i) normal cell morphology, (ii) reduced cell diameter, or (iii) helical cell shape. One variant of type ii was studied in some detail. Triton resistance, cell diameter reduction, and poor sporulation all may have resulted from a single mutation. High concentrations of Triton caused rapid lysis of wild-type cells. B. subtilis adapted to low Triton concentrations such that, upon subsequent exposure to higher concentrations, growth continued, although it bacame inhibited at very high concentrations. The variant studied retained its sensitivity to Triton-induced lysis but, after adaptation, grew at very high Triton levels. In this strain, cell diameter and cross-sectional area were reduced to about 73 and 50%, respectively, of those of wild type, yet the cells grew at normal rates, and DNA/protein/RNA ratios were largely unaltered. Peptidoglycan content per unit of cell surface area was higher in the variant than in the wild type under at least certain growth conditions.  相似文献   

4.
Tumor cells evade adaptive immunity by a variety of mechanisms, including selection of variants that are resistant to specific cytotoxic T lymphocyte (CTL) pressure. Recently, we have reported that the reorganization of the actin cytoskeleton can be used by tumor cells as a strategy to promote their resistance to CTL-mediated lysis. In this study, we further examined the functional features of a CTL-resistant tumor variant and investigated the relationship between cytoskeleton alteration, the acquisition of tumor resistance to CTL-induced cell death, Rho-GTPases, and focal adhesion kinase (FAK) pathways. Our data indicate that although the resistant cells do not display an increased migratory potential, an alteration of adhesion to the extracellular matrix was observed. When Rho-GTPases were activated in cells by the bacterial CNF1 (cytotoxic necrotizing factor 1), striking changes in the cell morphology, including actin cytoskeleton, focal adhesions, and membrane extensions, were observed. More importantly, such activation also resulted in a significant attenuation of resistance to CTL-induced cell death. Furthermore, we demonstrate that FAK signaling pathways were constitutively defective in the resistant cells. Silencing of FAK in the sensitive target cells resulted in the inhibition of immune synapse formation with specific CTLs and their subsequent lysis. Expression of the FAK mutant (Y397F) resulted in an inhibition of IGR-Heu cell adhesion and of their susceptibility to specific lysis. These results suggest that FAK activation plays a role in the control of tumor cell susceptibility to CTL-mediated lysis.  相似文献   

5.
A lysis defect was found to account for the failure of a streptomycin-resistant strain of Escherichia coli to form plaques when infected with the male-specific bacteriophage f2. The lysis defect was associated with the mutation to streptomycin resistance. Large amounts of apparently normal bacteriophage accumulated in these cells. Cell-free extracts from both the parental and mutant strains synthesized a potential lysis protein in considerable amounts in response to formaldehyde-treated f2 RNA but not in response to untreated RNA. As predicted from the nucleotide sequence of the analogous MS2 phage, the protein synthesized in vitro had the expected molecular weight and lacked glycine. The cistron for the lysis protein overlapped portions of the coat and replicase cistrons and was translated in the +1 reading frame. Initiation at the lysis protein cistron may be favored by translation errors that expose the normally masked initiation site, and streptomycin-resistant ribosomes, known to have more faithful translation properties, may be unable to efficiently synthesize the lysis protein.  相似文献   

6.
The ftsZ gene encodes an essential cell division protein that specifically localizes to the septum of dividing cells. In this study we characterized the effects of the ftsZ2(Rsa) mutation on cell physiology. We found that this mutation caused an altered cell morphology that included minicell formation and an increased average cell length. In addition, this mutation caused a temperature-dependent effect on cell lysis. During this investigation we fortuitously isolated a novel temperature-sensitive ftsZ mutation that consisted of a 6-codon insertion near the 5' end of the gene. This mutation, designated ftsZ26(Ts), caused an altered polar morphology at the permissive temperature and blocked cell division at the nonpermissive temperature. The altered polar morphology resulted from cell division and correlated with an altered geometry of the FtsZ ring. An intragenic cold-sensitive suppressor of ftsZ26(Ts) that caused cell lysis at the nonpermissive temperature was isolated. These results support the hypothesis that the FtsZ ring determines the division site and interacts with the septal biosynthetic machinery.  相似文献   

7.
Phosphoglucosamine mutase (GlmM; EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate to glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of the peptidoglycan precursor uridine 5'-diphospho- N -acetylglucosamine. We have recently identified the gene ( glmM ) encoding the enzyme of Streptococcus gordonii , an early colonizer on the human tooth and an important cause of infective endocarditis, and indicated that the glmM mutation in S. gordonii appears to influence bacterial cell growth, morphology, and sensitivity to penicillins. In the present study, we assessed whether the glmM mutation also affects escape from polymorphonuclear leukocyte (PMN)-dependent killing. Although no differences in attachment to human PMNs were observed between the glmM mutant and the wild-type S. gordonii , the glmM mutation resulted in increased sensitivity to PMN-dependent killing. Compared with the wild type, the glmM mutant induced increased superoxide anion production and lysozyme release by PMNs. Moreover, the glmM mutant is more sensitive to lysozyme, indicating that the GlmM may be required for synthesis of firm peptidoglycans for resistance to bacterial cell lysis. These findings suggest that the GlmM contributes to the resistance of S. gordonii to PMN-dependent killing. Enzymes such as GlmM could be novel drug targets for this organism.  相似文献   

8.
Continuous in vitro or in vivo passage of a BALB/c leukemia has resulted in generation of 2 immunologically distinct sublines. The subline maintained by in vitro passage failed to stimulate an allogeneic response but was susceptible to lysis by alloreactive cytotoxic cells. Conversely, the subline maintained by in vivo passage induced an allogeneic response but was resistant to lysis by cytotoxic T lymphocytes (CTL) reactive to H-2d antigens. Resistance to lysis occurred despite expression of H-2d antigens in a form recognizable by differentiated alloreactive CTL, as determined by cold-target inhibition experiments. Moreover, resistance was immunologically specific, in that the subline was susceptible to immune lysis mediated through recognition of other determinants. The results imply that the display and/or orientation of antigen in the cell membrane of these sublines that is required for a lytic event is distinct from the antigen expression necessary for immunologic recognition.  相似文献   

9.
DNA sequence and Southern blot analyses were used to determine the genetic defect of a Haemophilus ducreyi pyocin-resistant lipooligosaccharide (LOS) mutant, HD35000R. The region of the HD35000R chromosome containing the suspected mutation was amplified, and sequence analysis detected a 3,189-bp deletion. This deletion resulted in the loss of the entire waaQ gene, another open reading frame that encodes a putative homolog to a hypothetical protein (HI0461) of H. influenzae, the gene encoding an argininosuccinate synthase homolog, and a change in the 3' sequence of the lgtF gene. Southern blot analysis confirmed that no genomic rearrangements had occurred. Isogenic LOS mutants and the respective complemented mutants were evaluated for susceptibility to pyocin C. The mutants expressing truncated LOS were resistant to lysis by pyocin C, and complementation restored sensitivity to the pyocin. We conclude that HD35000R is defective in both glycosyltransferase genes and that pyocin resistance is due to truncation of the full-length LOS molecule.  相似文献   

10.
11.
A temperature-sensitive mutation in the murH gene of Escherichia coli confers a lysis phenotype at the restrictive temperature. An extragenic suppressor of murH apparently representing a new locus at 12.5 min on the linkage map and designated smhB is described. The smhB mutation by itself also conferred a temperature-sensitive lysis phenotype. A mutation in another new locus designated lytD which arose spontaneously in the smhB mutant was mapped close to smhB at 12.7 min on the linkage map. The lytD mutation by itself conferred a temperature-sensitive lysis phenotype indistinguishable from that of the murH mutant. Thus, the suppression of lysis in the smhB murH and the smhB lytD double mutants suggests a mechanism involving the reciprocal suppression of the two individual lysis-causing mutant alleles. The suppressor activity of smhB was apparently relatively specific in that smhB failed to prevent lysis induced by either mutational (murE or murF) or antibiotic-induced blocks in peptidoglycan synthesis. This suggests that murH, smhB, and lytD may be functionally related.  相似文献   

12.
A mutant strain of Escherichia coli K-12 was found in which spontaneous mutation to phage T7 resistance occurred at a very low frequency. T7 resistance in the parental strain from which this mutant was derived resulted from a mutation to excess capsular polysaccharide synthesis. The mutation preventing T7 resistance, non-9, inhibited capsule formation when transduced into capsulated strains. The non-9 mutation was cotransducible with his, the gene order in this region being non-9 his Su-1.  相似文献   

13.
Mutants deficient in both glucose-6-phosphate dehydrogenase and phosphoglucose isomerase lysed 4 to 5 h after growth in nutrient medium containing glucose, or after prolonged incubation if the medium contained galactose. The lysis could be prevented by the addition of any other rapidly metabolizable carbon source such as fructose, glucosamine, or glycerol. The glucose-induced lysis was also abolished by introduction of a third mutation lacking phospho-glucose mutase activity but not by a third mutation lacking uridine diphosphate-glucose pyrophosphorylase or teichoic acid glucosyl transferase activity. Galactose-induced lysis was prevented only if the additional mutation abolished the uridine diphosphate-glucose pyrophosphorylase activity. The results showed that lysis was caused by the intracellular accumulation of glucose-1-phosphate, which in turn inhibited at least one of the two enzymes that convert glucosamine-6-phosphate to N-acetyl glucosamine-6-phosphate.  相似文献   

14.
EBV transformation of human B cells in vitro results in establishment of immortalized cell lines (lymphoblastoid cell lines (LCL)) that express viral transformation-associated latent genes and exhibit a fixed, lymphoblastoid phenotype. In this report, we show that CD4(+) T cells can modify the differentiation state of EBV-transformed LCL. Coculture of LCL with EBV-specific CD4(+) T cells resulted in an altered phenotype, characterized by elevated CD38 expression and decreased proliferation rate. Relative to control LCL, the cocultured LCL were markedly less susceptible to lysis by EBV-specific CD8(+) CTL. In contrast, CD4(+) T cell-induced differentiation of LCL did not diminish sensitivity of LCL to lysis by CD8(+) CTL specific for an exogenously loaded peptide Ag or lysis by alloreactive CD8(+) CTL, suggesting that differentiation is not associated with intrinsic resistance to CD8(+) T cell cytotoxicity and that evasion of lysis is confined to EBV-specific CTL responses. CD4(+) T cell-induced differentiation of LCL and concomitant resistance of LCL to lysis by EBV-specific CD8(+) CTL were associated with reduced expression of viral latent genes. Finally, transwell cocultures, in which direct LCL-CD4(+) T cell contact was prevented, indicated a major role for CD4(+) T cell cytokines in the differentiation of LCL.  相似文献   

15.
A mutant was isolated from Escherichia coli K-12 which showed increased resistance towards phosphonomycin, a new bactericidal antibiotic recently isolated from strains of Streptomyces. Evidence is presented which suggests that this mutant is resistant to lysis by phosphonomycin because of a lower affinity of phosphoenolpyruvate: uridine diphospho-N-acetylglucosamine enolpyruvyl transferase for this antibiotic. This mutant was also found to be temperature-sensitive in growth. At 42 C mutant cells grew poorly, and the rate of incorporation of (3)H-diaminopimelic acid into trichloroacetic acid-insoluble material was also greatly reduced. Genetic studies indicate that the increased resistance toward phosphonomycin and temperature sensitivity in growth of this mutant are probably the consequences of a single mutation.  相似文献   

16.
Mutations (env) which resulted in increased sensitivity of gonococci to diverse compounds were studied by transformation. Strains carrying an env mutation were more sensitive than wild-type strains to several antibiotics, dyes, and detergents. The env mutations resulted in complete phenotypic suppression of low-level resistance to these same drugs determined by mutation at ery. Recombination was observed in transformation crosses between various env mutants. The env locus was not linked to the cluster of antibiotic resistance genes near str and spc.  相似文献   

17.
The murH mutant of Escherichia coli exhibits temperature-sensitive growth and lysis at the restrictive temperature. Temperature-resistant derivatives of the mutant occurred at a frequency of about 3 X 10(-6). All of the seven independent isolates examined were shown to be pseudorevertants carrying extragenic suppressors of murH, which mapped at 24.5 min on the linkage map. One allele, apparently representing a new locus, designated smhA, was characterized further. The smhA mutation by itself conferred no recognizable phenotype. However, smhA suppressed the temperature-sensitive lysis phenotype of the murH mutant. The smhA mutant acquired a spontaneous mutation in another new gene, designated lytE, which was mapped at 25 min. The lytE mutation by itself conferred a temperature-sensitive lysis phenotype indistinguishable from that of the murH mutant. The lytE mutation was suppressed by smhA as well as by another suppressor of murH designated smhB. The suppressor activity of smhA was apparently relatively specific in that smhA failed to prevent lysis caused by either mutational or antibiotic-induced blocks in peptidoglycan synthesis. The possibility that the smhA and lytE genes are functionally related to murH is considered.  相似文献   

18.
Escherichia coli strain 397c carries a temperature-sensitive mutation, rpoC397, that removes the last 50 amino acids of the RNA polymerase beta' subunit and is nonpermissive for plating of bacteriophage P2. P2 gor mutants productively infect 397c and define a new gene, lysC, encoded by a reading frame that extensively overlaps the P2 lysis accessory gene, lysB. The unusual location of lysC with respect to lysB is reminiscent of the Rz/Rz1 lysis gene pair of phage lambda. Indeed, coexpression of lysB and lysC complemented the growth defect of lambda Rz/Rz1 null mutants, indicating that the LysB/C pair is similar to Rz/Rz1 in both gene arrangement and function. Cells carrying the rpoC397 mutation exhibited an early onset of P2-induced lysis, which was suppressed by the gor mutation in lysC. We propose that changes in host gene expression resulting from the rpoC397 mutation result in changes in the composition of the bacterial cell wall, making the cell more susceptible to P2-mediated lysis and preventing accumulation of progeny phage sufficient for plaque formation.  相似文献   

19.
Membrane permeabilizing plant defensive proteins first encounter the fungal cell wall that can harbor specific components that facilitate or prevent access to the plasma membrane. However, signal transduction pathways controlling cell wall composition in filamentous fungi are largely unknown. We report here that the deposition of cell wall constituents that block the action of osmotin (PR-5), an antifungal plant defense protein, against Aspergillus nidulans requires the activity of a heterotrimeric G-protein mediated signaling pathway. The guanidine nucleotide GDPbetaS, that locks G-proteins in a GDP-bound inactive form, inhibits osmotin-induced conidial lysis. A dominant interfering mutation in FadA, the alpha-subunit of a heterotrimeric G-protein, confers resistance to osmotin. A deletion mutation in SfaD, the beta-subunit of a heterotrimeric G-protein also increases osmotin resistance. Aspergillus nidulans strains bearing these mutations also have increased tolerance to SDS, reduced cell wall porosity and increased chitin content in the cell wall.  相似文献   

20.
L-Ribulose 5-phosphate (L-Ru5P) was identified as the primary effector molecule of L-arabinose-induced bulge formation in Escherichia coli IFO 3545 observed in nutrient broth with 5% (w/v) sodium chloride. Hyperinduction of L-arabinose isomerase was due to exogenous sodium chloride and the resulting alteration in the balance of the L-arabinose-metabolizing enzymes resulted in accumulation of L-Ru5P. L-Ru5P induced the lysis of an L-arabinose-negative, L-Ru5P 4-epimerase-less mutant, ara-207, even when directly added to the medium but was not active against the wild-type strain. Some L-arabinose-utilizing (L-arabinose-resistant) revertants of ara-207 were still sensitive to L-Ru5P, indicating the involvement of another mutation in L-Ru5P-sensitivity other than genetic lack of L-Ru5P 4-epimerase. Among the various pentose phosphate esters tested, only L-Ru5P could induce lysis of ara-207. The lytic activity of L-Ru5P was attributed to its effect on bacterial sugar nucleotide metabolism which caused secondary accumulation of uridine 5'-diphosphate galactose (UDPGal), which provoked lysis induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号