首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-17A is a T cell-derived proinflammatory cytokine that contributes to the pathogenesis of rheumatoid arthritis. Recently, six related molecules have been identified to form the IL-17 family, as follows: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. Whereas IL-17A and IL-17F up-regulate IL-6 in synovial fibroblasts, IL-17B and IL-17C are reported to stimulate the release of TNF-alpha and IL-1beta from the monocytic cell line, THP-1 cell. However, their detailed function remains to be elucidated. We report in this study the effects of IL-17 family on the collagen-induced arthritis (CIA) progression by T cell gene transfer and bone marrow chimeric mice. The mRNA expressions of IL-17 family (IL-17A, IL-17B, IL-17C, and IL-17F) and their receptor (IL-17R and IL-17Rh1) genes in the arthritic paws of CIA mice were elevated compared with controls. Although IL-17A and IL-17F were expressed in CD4(+) T cells, IL-17B and IL-17C were expressed in the cartilage and in various cell populations in the CIA arthritic paws, respectively. In vitro, IL-17A, IL-17B, IL-17C, and IL-17F induced TNF-alpha production in mouse peritoneal exudate cells. In vivo, adoptive transfer of IL-17B- and IL-17C-transduced CD4(+) T cells evidently exacerbated arthritis. Bone marrow chimeric mice of IL-17B and IL-17C exhibited elevated serum TNF-alpha concentration and the high arthritis score upon CIA induction. Moreover, neutralization of IL-17B significantly suppressed the progression of arthritis and bone destruction in CIA mice. Therefore, not only IL-17A, but also IL-17B and IL-17C play an important role in the pathogenesis of inflammatory arthritis.  相似文献   

2.
Although accumulating evidence indicates high expression of CYP17A1(P45017A1) allows castration resistant prostate cancer (CRPC) to maintain high intratumoral androgen levels, the potential P45017A1 activity has not been characterized yet. The aim of this study was to examine the potential CYP17A1 activity including 17α-hydroxylase and 17,20-lyase activities in human CRPC and the effect of a CYP17A inhibitor. We used three human CRPC cell lines: C4-2 and C4-2AT6 which was established from C4-2 under androgen ablation conditions for 6 months, and PC3. To ascertain the potential CYP17A1 activity, we cultured with the steroid precursors: 13C-[2,3,4]-progesterone (13C-Prog), and analyzed the sequential biosynthesis 13C-[2,3,4]-17-hydroxyprogesterone (13C-17OHP) and 13C-[2,3,4]-androstenedione(13C-Adione) by liquid chromatography/mass spectrometry (LC/MS/MS).The C4-2AT6 cells showed significantly higher CYP17A1 expression than C4-2 cells (p < 0.001). LC/MS/MS analysis enabled us to detect the 13C-17-OHP and 13C-A-dione in these cell lines. The concentration ratio of 13C-Adione/13C-17OHP (Adione–17OHP ratio), which is thought to reflect the differences between 17-hydroxylase and 17,20-lyase activities, was then determined. The Adione–17OHP ratio in C4-2AT6 cells was significantly higher than that of C4-2 cells (p < 0.001). Abiraterone were able to inhibit the CYP17A activities, although abiraterone did not have anti-proliferative effects on C4-2 and C4-2AT6 cells at clinically achievable concentrations of <1000 nM in vitro. The present study clearly demonstrates CRPC have the dual activities of CYP17A1 mediated by 17-hydroxylase activity and 17,20-lyase activity. Abiraterone doesn’t have an in vitro anti-proliferative efficacy in CRPC cells, suggesting limited efficacy in vitro.  相似文献   

3.
The copper metallochaperone Cox17 is proposed to shuttle Cu(I) ions to the mitochondrion for the assembly of cytochrome c oxidase. The Cu(I) ions are liganded by cysteinyl thiolates. Mutational analysis on the yeast Cox17 reveals three of the seven cysteinyl residues to be critical for Cox17 function, and these three residues are present in a Cys-Cys-Xaa-Cys sequence motif. Single substitution of any of these three cysteines with serines results in a nonfunctional cytochrome oxidase complex. Cells harboring such a mutation fail to grow on nonfermentable carbon sources and have no cytochrome c oxidase activity in isolated mitochondria. Wild-type Cox17 purified as untagged protein binds three Cu(I) ions/molecule. Mutant proteins lacking only one of these critical Cys residues retain the ability to bind three Cu(I) ions and are imported within the mitochondria. In contrast, Cox17 molecules with a double Cys --> Ser mutation exhibit no Cu(I) binding but are still localized to the mitochondria. Thus, mitochondrial uptake of Cox17 is not restricted to the Cu(I) conformer of Cox17. COX17 was originally cloned by virtue of complementation of a mutant containing a nonfunctional Cys --> Tyr substitution at codon 57. The mutant C57Y Cox17 fails to accumulate within the mitochondria but retains the ability to bind three Cu(I) ions. A C57S Cox17 variant is functional, and a quadruple Cox17 mutant with C16S/C36S/C47S/C57S substitutions binds three Cu(I) ions. Thus, only three cysteinyl residues are important for the ligation of three Cu(I) ions. A novel mode of Cu(I) binding is predicted.  相似文献   

4.
5.
Site directed mutagenesis of Cys17-->Ser17 form of recombinant human granulocyte colony stimulating factor (rhG-CSF C17S) for sequential replacing of surface His(43) and His(52) with alanine was used to identify residues critical for the protein interaction with metal ions, in particular Ni(2+) chelated by dye Light Resistant Yellow 2 KT (LR Yellow 2KT)-polyethyleneglycol (PEG), and refolding after partitioning of inclusion bodies in aqueous two-phase systems. Strong binding of rhG-CSF (C17S) to PEG-LR Yellow 2KT-Cu(II) complex allowed for the adoption of affinity chromatography on Sepharose-LR Yellow 2KT-Cu(II) that appeared to be essential for the rapid isolation of mutated forms of rhG-CSF. Efficiency of that purification stage is exemplified by isolation of rhG-CSF (C17S, H43A) and rhG-CSF (C17S, H43A, H52A) mutants in correctly folded and highly purified state. Affinity partitioning of rhG-CSF histidine mutants was studied in aqueous two-phase systems containing Cu(II), Ni(II) and Hg(II) chelated by LR Yellow 2KT-PEG at pH 7.0 and Cu(II)-at pH 5.0. It was determined, that affinity of rhG-CSF mutants for metal ions decreased in the order of C17S>C17S, H43A>C17S, H43A, H52A for Cu(II), and C17S=C17S, H43A>C17S, H43A, H52A for Ni(II) ions, while affinity of all rhG-CSF mutants for Hg(II) ions was of the same order of magnitude. Influence of His(43) and His(52) mutation on protein refolding was studied by partitioning of the respective inclusion body extract in aqueous two-phase systems containing Ni(II) and Hg(II) ions. Data on rhG-CSF histidine mutant partitioning and refolding indicated, that His(52) mutation is crucial for the strength of protein interaction with chelated Ni(II) ions and refolding efficiency.  相似文献   

6.
Expression of a full-length cDNA encoding bovine adrenal cytochrome P450C21   总被引:1,自引:0,他引:1  
Two full-length cDNA clones encoding bovine adrenocortical P450C21 have been constructed in a eukaryotic expression vector using partial-length cDNAs whose structures have been previously reported. Following expression of these cDNAs in COS 1 cells, the substrate specificity of P450C21 was determined. Of the 18 steroids tested, progesterone, 17 alpha-hydroxyprogesterone, and 11 beta,17 alpha-dihydroxyprogesterone were found to be the only steroids to serve as substrates for this adrenal enzyme, a much higher degree of substrate specificity than has been reported for a hepatic 21-hydroxylase. The Vmax for 17 alpha-hydroxyprogesterone was 2.5 times greater than that for progesterone, whereas delta 5-steroids were unable to serve as substrate for this enzyme. A difference between the two cDNAs is located at amino acid 401 where one resultant enzyme contains tyrosine while the other contains histidine. This amino acid difference appears to have no effect on the kinetic properties of adrenal P450C21.  相似文献   

7.
8.
Ascidians have been employed as model organisms in investigating spermatogenesis. 17beta-hydroxysteroid dehydrogenase (HSD) is a steroidogenic enzyme essential for invertebrate spermatogenesis. A homologue of HSD was found in the EST database of Ciona intestinalis and cloned. Sequence analysis showed significant homology to zebra fish, sea urchin and human 17beta-HSD. The gene has an open reading frame (ORF) of 918 nucleotides coding for a polypeptide of 306 amino acids and a calculated mass of 35-kDa. Immunoblotting with an antibody raised against HSD recognized a 35-kDa protein purified from the C. intestinalis testis. The HSD protein was localized in steroidogenic cells in the Ciona testis. These results suggest that C. intestinalis 17beta-HSD is equivalent to the enzyme of vertebrate Leydig cells and that 17beta-HSD could be a phylogenetic marker for organisms producing steroids.  相似文献   

9.
Role of a bulged A residue in a specific RNA-protein interaction   总被引:26,自引:0,他引:26  
H N Wu  O C Uhlenbeck 《Biochemistry》1987,26(25):8221-8227
  相似文献   

10.
Fynomers are small binding proteins derived from the human Fyn SH3 domain. Using phage display technology, Fynomers were generated inhibiting the activity of the proinflammatory cytokine interleukin-17A (IL-17A). One specific Fynomer called 2C1 inhibited human IL-17A in vitro with an IC50 value of 2.2 nm. Interestingly, when 2C1 was genetically fused to the Fc part of a human antibody via four different amino acid linkers to yield bivalent IL-17A binding proteins (each linker differed in length), the 2C1-Fc fusion protein with the longest linker displayed the most potent inhibitory activity. It blocked homodimeric IL-17A with an IC50 value of 21 pm, which corresponds to a hundredfold improved IC50 value as compared to the value obtained with monovalent Fynomer 2C1. In contrast, the 2C1-Fc fusion with the shortest linker showed only an ∼8-fold improved IC50 value of 260 pm. Furthermore, in a mouse model of acute inflammation, we have shown that the most potent 2C1-Fc fusion protein is able to efficiently inhibit IL-17A in vivo. With their suitable biophysical properties, Fynomer-Fc fusion proteins represent new drug candidates for the treatment of IL-17A mediated inflammatory conditions such as psoriasis, psoriatic arthritis, or rheumatoid arthritis.  相似文献   

11.
A calmodulin-binding peptide of caldesmon   总被引:4,自引:0,他引:4  
Caldesmon is a major actin-binding protein identified in smooth muscle and many non-muscle cells. It also interacts with calmodulin and a number of other acidic proteins. We have shown previously that the polypeptide stretch from Val629 to Ser666 near the C terminus contains a calmodulin binding site (Wang, C.-L. A., Wang, L.-W. C., Xu, S., Lu, R. C., Saavedra-Alanis, V., and Bryan, J. (1991) J. Biol. Chem. 266, 9166-9172). On the other hand, Bartegi et al. (Bartegi, A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238) reported a cyanogen bromide fragment beginning at Trp659 which is also capable of binding both calmodulin and actin. A comparison of the overlapping sequence between these two peptides suggests that this calmodulin binding site is localized in a 7-residue segment, 659Trp-Glu-Lys-Gly-Asn-Val-Phe665. We have chemically synthesized an 18-residue peptide (GS17C, from Gly651 to Ser667 with an added cysteine at the C terminus) that contains this segment. This peptide was purified by high performance liquid chromatography and labeled with fluorescent probes at the terminal cysteine residue. We found that GS17C indeed binds calmodulin in a Ca(2+)-dependent manner (Kd = 8 x 10(-7) M) and appears to compete with caldesmon. Interestingly, this synthetic peptide also co-sediments with F-actin, binding to actin being displaceable by calmodulin, as in the case of the native caldesmon. But GS17C does not have any effect on the actomyosin ATPase activity, indicating that this peptide segment does not contain the inhibitory region.  相似文献   

12.
Proteases and lipases from a number of different species of psychrotrophic bacteria isolated from dairy products are resistant to heat treatments of 77°C for a holding time of 17 s and 140°C for a holding time of 5s. A further treatment combining the 77°C for 17 s heating process with a heat treatment involving a temperature of 55°C for 1 h was also examined. The proteases and, to a lesser extent, the lipases were also resistant to the treatments in combination. The resistance of proteases and lipases to inactivation by a treatment of 55°C for 1 h varied between and within species. Therefore, this treatment may not have a widespread practical application.  相似文献   

13.
Male pigs are routinely castrated to prevent the accumulation of testicular 16-androstene steroids, in particular 5α-androst-16-en-3-one (5α-androstenone), which contribute to an off-odour and off-flavour known as boar taint. Cytochrome P450C17 (CYP17A1) catalyses the key regulatory step in the formation of the 16-androstene steroids from pregnenolone by the andien-β synthase reaction or the synthesis of the glucocorticoid and sex steroids via 17α-hydroxylase and C17,20 lyase pathways respectively. We have expressed CYP17A1, along with cytochrome P450 reductase (POR), cytochrome b5 reductase (CYB5R3) and cytochrome b5 (CYB5) in HEK-293FT cells to investigate the importance of the two forms of porcine CYB5, CYB5A and CYB5B, in both the andien-β synthase as well as the 17α-hydroxylase and C17,20 lyase reactions. Increasing the ratio of CYB5A to CYP17A1 caused a decrease in 17α-hydroxylase (p < 0.013), a transient increase in C17,20 lyase, and an increase in andien-β synthase activity (p < 0.0001). Increasing the ratio of CYB5B to CYP17A1 also decreased 17α-hydroxylase, but did not affect the andien-β synthase activity; however, the C17,20 lyase, was significantly increased. These results demonstrate the differential effects of two forms of CYB5 on the three activities of porcine CYP17A1 and show that CYB5B does not stimulate the andien-β synthase activity of CYP17A1.  相似文献   

14.
P450 oxidoreductase (POR) has a pivotal role in facilitating electron transfer from nicotinamide adenine dinucleotide phosphate to microsomal cytochrome P450 (CYP) enzymes, including the steroidogenic enzymes CYP17A1 and CYP21A2. Mutations in POR have been shown recently to cause congenital adrenal hyperplasia with apparent combined CYP17A1 and CYP21A2 deficiency that comprises a variable clinical phenotype, including glucocorticoid deficiency, ambiguous genitalia, and craniofacial malformations. To dissect structure-function relationships potentially explaining this phenotypic diversity, we investigated whether specific POR mutations have differential effects on CYP17A1 and CYP21A2. We compared the impact of missense mutations encoding for single amino acid changes in three distinct regions of the POR molecule: 1), Y181D and H628P close to the central electron transfer area, 2) S244C located within the hinge close to the flavin adenine dinucleotide and flavin mononucleotide domains of POR, and 3) A287P that is clearly distant from the two other regions. Functional analysis using a yeast microsomal assay with coexpression of human CYP17A1 or CYP21A2 with wild-type or mutant human POR revealed equivalent decreases in CYP17A1 and CYP21A2 activities by Y181D, H628P, and S244C. In contrast, A287P had a differential inhibitory effect, with decreased catalytic efficiency (Vmax/Km) for CYP17A1, whereas CYP21A2 retained near normal activity. In vivo analysis of urinary steroid excretion by gas chromatography/mass spectrometry in 11 patients with POR mutations showed that A287P homozygous patients had the highest corticosterone/cortisol metabolite ratios, further indicative of preferential inhibition of CYP17A1. These findings provide novel mechanistic insights into the redox regulation of human steroidogenesis. Differential interaction of POR with electron-accepting CYP enzymes may explain the phenotypic variability in POR deficiency, with additional implications for hepatic drug metabolism by POR-dependant CYP enzymes.  相似文献   

15.
There is growing evidence that the complement activation product C5a positively or negatively regulates inflammatory functions. The studies presented here report that C5a exerts anti-inflammatory effects by altering production of the cytokines IL-17A and IL-23 during endotoxic shock in young adult male C57BL/6J mice and has similar effects on macrophages from the same mice. IL-17A and IL-23 both appeared in plasma during endotoxemia, and their neutralization improved survival. The relevant sources of IL-17A during endotoxemia were not CD4(+) cells, γδ T cells, or NK cells but CD11b(+)F4/80(+) macrophages. The addition in vitro of C5a to lipopolysaccharide-activated peritoneal macrophages dose dependently antagonized the production of IL-17A (IC(50), 50-100 nM C5a) and IL-23 (IC(50), 10 nM C5a). This suppression required the receptor C5aR, but was independent of the second C5a receptor, C5L2. Genetic absence of C5aR was associated with much higher levels of IL-17A and IL-23 during endotoxic shock. Mechanistically, C5a mediated its effects on the IL-17A/IL-23 axis in a 2-step process. C5a caused activation of the PI3K-Akt and MEK1/2-ERK1/2 pathways, resulting in induction of IL-10, which powerfully inhibited production of IL-17A and IL-23. These data identify previously unknown mechanisms by which the anaphylatoxin C5a limits acute inflammation and antagonizes the IL-17A/IL-23 axis.  相似文献   

16.
A thermochemical-hydrodynamic model of the production of trace species by electrical discharges has been used to estimate the rates of fixation of C and N by lightning in the primitive atmosphere. Calculations for various possible mixtures of CH4, CO2, CO, N2, H2, and H2O reveal that the prime species produced were probably HCN and NO and that the key parameter determining the rates of fixation was the ratio of C atoms to O atoms in the atmosphere. Atmospheres with C more abundant than O have large HCN fixation rates, in excess of 10(17) molecules J-1, but small NO yields. However, when O is more abundant than C, the NO fixation rate approaches 10(17) molecules J-1 while the HCN yield is small. The implications for the evolution of life are discussed.  相似文献   

17.
Time-dependent NOE studies of the C13(1) and C17(1) methylene proton resonances of the heme peripheral propanoate groups have elucidated their mobility in the active site of the ferric high-spin form of Galeorhinus japonicus myoglobin. A large difference in the chemical shift due to the non-equivalence of the heme C13(1) and C17(1) methylene proton resonances allows selective irradiation of a given proton resonance by a high-power selective decoupler pulse in spite of their fast relaxation rates. NOE accumulation of the resonance of one methylene proton after saturation of the resonance of the other proton essentially follows the theoretical prediction derived using the two-spin approximation, and the cross-relaxation rates for the heme C13(1) and C17(1) methylene proton spin systems were quantitatively determined. The correlation time for the mobility of the internuclear vector connecting the heme C13(1) or C17(1) methylene protons was then calculated from the cross-relaxation rate and values of approximately 11 ns were obtained for both C13(1) and C17(1) methylene groups in 2 mM Galeorhinus japonicus myoglobin at 35 degrees C. The immobile C13(1) and C17(1) methylenes of the heme propanoate groups, together with a large difference in chemical shift between the methylene proton resonances, dictate their fixed orientation with respect to the protein moiety as well as the heme plane, and are therefore consistent with the immobile heme in the active site of myoglobin.  相似文献   

18.
The herpes simplex virus (HSV) UL17 and UL25 minor capsid proteins are essential for DNA packaging. They are thought to comprise a molecule arrayed in five copies around each of the capsid vertices. This molecule was initially termed the "C-capsid-specific component" (CCSC) (B. L. Trus et al., Mol. Cell 26:479-489, 2007), but as we have subsequently observed this feature on reconstructions of A, B, and C capsids, we now refer to it more generally as the "capsid vertex-specific component" (CVSC) (S. K. Cockrell et al., J. Virol. 85:4875-4887, 2011). We previously confirmed that UL25 occupies the vertex-distal region of the CVSC density by visualizing a large UL25-specific tag in reconstructions calculated from cryo-electron microscopy (cryo-EM) images. We have pursued the same strategy to determine the capsid location of the UL17 protein. Recombinant viruses were generated that contained either a small tandem affinity purification (TAP) tag or the green fluorescent protein (GFP) attached to the C terminus of UL17. Purification of the TAP-tagged UL17 or a similarly TAP-tagged UL25 protein clearly demonstrated that the two proteins interact. A cryo-EM reconstruction of capsids containing the UL17-GFP protein reveals that UL17 is the second component of the CVSC and suggests that UL17 interfaces with the other CVSC component, UL25, through its C terminus. The portion of UL17 nearest the vertex appears to be poorly constrained, which may provide flexibility in interacting with tegument proteins or the DNA-packaging machinery at the portal vertex. The exposed locations of the UL17 and UL25 proteins on the HSV-1 capsid exterior suggest that they may be attractive targets for highly specific antivirals.  相似文献   

19.
IL-17RA is a shared receptor subunit for several cytokines of the IL-17 family, including IL-17A, IL-17C, IL-17E (also called IL-25) and IL-17F. It has been shown that mice deficient in IL-17RA are more susceptible to sepsis than wild-type mice, suggesting that IL-17RA is important for host defense against sepsis. However, it is unclear which ligands for IL-17RA, such as IL-17A, IL-17C, IL-17E/IL-25 and/or IL-17F, are involved in the pathogenesis of sepsis. Therefore, we examined IL-17A, IL-17E/IL-25 and IL-17F for possible involvement in LPS-induced endotoxin shock. IL-17A-deficient mice, but not IL-25- or IL-17F-deficient mice, were resistant to LPS-induced endotoxin shock, as compared with wild-type mice. Nevertheless, studies using IL-6-deficient, IL-21Rα-deficient and Rag-2-deficient mice, revealed that neither IL-6 and IL-21, both of which are important for Th17 cell differentiation, nor Th17 cells were essential for the development of LPS-induced endotoxin shock, suggesting that IL-17A-producing cells other than Th17 cells were important in the setting. In this connection, IL-17A was produced by macrophages, DCs and eosinophils after LPS injection. Taken together, these findings indicate that IL-17A, but not IL-17F or IL-25, is crucial for LPS-induced endotoxin shock. In addition, macrophages, DCs and eosinophils, but not Th17 cells or γδ T cells, may be sources of IL-17A during LPS-induced endotoxin shock.  相似文献   

20.
The SIV-infected rhesus macaque is an excellent model to examine candidate AIDS virus vaccines. These vaccines should elicit strong CD8(+) responses. Previous definition of the peptide-binding motif and optimal peptides for Mamu-A*01 has created a demand for Mamu-A*01-positive animals. We have now studied a second MHC class I molecule, Mamu-B*17, that is present in 12% of captive-bred Indian rhesus macaques. The peptide-binding specificity of the Mamu-B*17 molecule was characterized using single substitution analogs of two Mamu-B*17-binding peptides and libraries of naturally occurring sequences of viral or bacterial origin. Mamu-B*17 uses position 2 and the C terminus of its peptide ligands as dominant anchor residues. The C terminus was found to have a very narrow specificity for the bulky aromatic residue W, with other aromatic residues (F and Y) being only occasionally tolerated. Position 2 is associated with a broad chemical specificity, readily accommodating basic (H and R), bulky hydrophobic (F and M), and small aliphatic (A) residues. Using this motif, we identified 50 peptides derived from SIV(mac)239 that bound Mamu-B*17 with an affinity of 500 nM or better. ELISPOT and intracellular cytokine-staining assays showed that 16 of these peptides were antigenic. We have, therefore, doubled the number of MHC class I molecules for which SIV-derived binding peptides have been characterized. This allows for the quantitation of immune responses through tetramers and analysis of CD8(+) function by intracellular cytokine-staining assays and ELISPOT. Furthermore, it is an important step toward the design of a multiepitope vaccine for SIV and HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号