首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of muscle fatigue due to exhaustive exercise is associated with impaired sarcoplasmic reticulum (SR) Ca-transport activity. This study tested the hypothesis that SR failure is a consistent feature of cardiac and skeletal muscle fatigue owing to relative functional overload regardless of the method of induction: excessive stimulation, diminished performance capacity, or excessive excitation-contraction coupling. The Ca-transport activity was determined using three unique models of muscle fatigue: chronic and rapid ventricular pacing in dogs; metabolic inhibition caused by global cardiac ischemia in swine; and the hypermetabolic syndrome of porcine malignant hyperthermia (MH). Both pacing- and ischemia-induced fatigue resulted in reduction of SR Ca-transport ATPase activity: from 275 +/- 58 to 159 +/- 57 nmol.min-1.mg-1 (mU/mg) and from 577 +/- 82 to 177 +/- 133 mU/mg, respectively. Both pacing-induced fatigue and halothane-induced MH resulted in reduction of Ca-sequestration activity of muscle homogenates from 5.95 +/- 2.4 to 3.11 +/- 0.67 nM/s at 300 nM Ca and 38.7 +/- 10.5 to 16.3 +/- 8.0 nM/s at 1500 nM Ca, respectively (all p less than 0.01). The isolated SR Ca-ATPase activity correlated with Ca-sequestration activity of myocardial homogenates (r = 0.76; p less than 0.005). Different models were used to study the relationship of Ca-transport activity with relaxation function, degree of acidosis, and ionized Ca concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have previously demonstrated that in furazolidone-induced congestive heart failure in turkeys the specific Ca(2+)-ATPase activity of myocardial sarcoplasmic reticulum (SR) is 60% increased in compensation for a 50% depression in net Ca(2+)-sequestration activity. This study tested the hypothesis that SR Ca(2+)-uptake and Ca(2+)-ATPase activities were uncoupled in this cardiomyopathy because of increased Ca(2+)-release channel activity. A novel microassay was used to monitor Ca2+ transport by myocardial homogenates using the fluorescent Ca2+ dye indo 1 to indicate extravesicular ionized Ca2+. The method is applied to cyropreserved biopsy specimens of myocardium and requires only 50 mg tissue. Both SR Ca(2+)-pump and SR Ca(2+)-channel activity were estimated using the channel-inhibitor ruthenium red (RR) and the mitochondrial inhibitor sodium azide. The specificity of the RR inhibition was confirmed using ryanodine. Cardiomyopathy was induced in 2-week-old turkey poults by the addition of 0.07% furazolidone to their feed for 4 weeks. Compared with controls, myocardial maximal Ca(2+)-channel activity relative to maximal Ca(2+)-pump activity was 22% greater and duration of Ca(2+)-channel activity was 100% increased. However, the heart failure birds had 43 and 53% decreases in absolute maximal Ca(2+)-pumping and Ca(2+)-channel activities, respectively. The abnormal Ca(2+)-channel activity resulted in 200% greater time before initiation of net Ca2+ sequestration and 700% greater final myocardial Ca2+ concentrations. For all birds, the Ca(2+)-accumulating activity was highly correlated with Ca(2+)-release activity (all p less than 0.05). These data indicate that in this animal model of congestive heart failure there is defective SR Ca(2+)-channel function resulting in abnormal Ca2+ homeostasis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The calmodulin content in cardiomyocyte cytosol of hypoxic myocardium is increased compared to normal level. This is unaccompanied by differences in the stimulating effect of calmodulin on Ca2+ transport in sarcoplasmic reticulum (SR) of ischemic heart. The decrease of the endogenous cAMP-dependent protein kinase activity in ischemia is associated with the lowered resistance to trypsinolysis of Ca2+ transport in SR (trypsin/microsomal protein ratio is 1:10) with simultaneous Ca-ATPase activation. In the presence of exogenous protein kinase and cAMP the protective effect of phosphorylation on Ca2+ transport in SR vesicles of hypoxic cardiomyocytes treated with trypsin for 10 min reaches the same level as in intact heart.  相似文献   

4.
Myocardial stunning (temporary post-ischaemic contractile dysfunction) may be caused by oxidative stress and/or impaired myocyte calcium homeostasis. Regional myocardial stunning was induced in open-chest pigs (segment shortening reduced to 68.3 ± 4.7% of baseline) by repetitive brief circumflex coronary occlusion (I/R). Reduced glutathione was depleted in stunned myocardium (1.34 ± 0.06 vs. 1.77 ± 0.11 nmol/mg, p = 0.02 vs. remote myocardium) indicating regional oxidant stress, but no regional differences were observed in protein-bound 3-nitrotyrosine or S-nitrosothiol content. Repetitive I/R did not affect myocardial quantities of the sarcolemmal sodium-calcium exchanger, L-type channel, SR calcium ATPase and phospholamban, or the kinetics of ligand binding to L-type channels and SR calcium release channels. However, initial rates of oxalate-supported 45Ca uptake by SR were impaired in stunned myocardium (41.3 ± 13.5 vs. 73.0 ± 15.6 nmol/min/mg protein, p = 0.03). The ability of SR calcium ATPase to sequester cytosolic calcium is impaired in stunned myocardium. This is a potential mechanism underlying contractile dysfunction.  相似文献   

5.
Impaired sarcoplasmic reticulum (SR) Ca release has been suggested to contribute to the depressed cardiac function in heart failure. The release of Ca from the SR may be regulated by the ryanodine receptor, triadin, junctin, calsequestrin, and a histidine-rich, Ca-binding protein (HRC). We observed that the levels of HRC were reduced in animal models and human heart failure. To gain insight into the physiological function of HRC, we infected adult rat cardiac myocytes with a recombinant adenovirus that contains the full-length mouse HRC cDNA. Overexpression (1.7-fold) of HRC in adult rat cardiomyocytes was associated with increased SR Ca load (28%) but decreased SR Ca-induced Ca release (37%), resulting in impaired Ca cycling and depressed fractional shortening (36%) as well as depressed rates of shortening (38%) and relengthening (33%). Furthermore, the depressed basal contractile and Ca kinetic parameters in the HRC-infected myocytes remained significantly depressed even after maximal isoproterenol stimulation. Interestingly, HRC overexpresssion was accompanied by increased protein levels of junctin (1.4-fold) and triadin (1.8-fold), whereas the protein levels of ryanodine receptor, calsequestrin, phospholamban, and sarco(endo)plasmic reticulum Ca-ATPase remained unaltered. Collectively, these data indicate that alterations in expression levels of HRC are associated with impaired cardiac SR Ca homeostasis and contractile function.  相似文献   

6.
The effect of corticotropin (ACTH1-39), synacthen (ACTH1-24) and hydrocortisone-hemisuccinate on the activity of Ca-ATPase of skeletal muscle sarcoplasmic reticulum (SR) and calcium (Ca) accumulation in SR vesicles has been studied. It has been shown that ACTH1-39 (I U per 100 g body weight) increased the activity of Ca-ATPase in skeletal muscle SR of rats, while hydrocortisone (5 mg per 100 g body weight) did not change the activity of Ca-ATPase in skeletal muscle SR. However, both hormones increase the total activity of ATPase. ACTH1-39 and ACTH1-24 (0.05-0.0005 U/ml) and hydrocortisone (2.8 X 10(-7)-2.8 X 10(-9) mol/l) increased in vitro Ca-ATPase isolated from rabbit skeletal muscle SR and accumulation of Ca is SR vesicles. At the same time, hydrocortisone reduced calcium/phosphorus ratio, while ACTH1-39 and ACTH1-24 increased it, i.e. hydrocortisone facilitated Ca accumulation in SR requiring more ATP energy, whereas ACTH facilitated Ca accumulation in SR requiring less ATP energy.  相似文献   

7.
肾上腺髓质素对大鼠损伤性心肌肌浆网功能的改善   总被引:3,自引:0,他引:3  
Li XF  Yang Y  Gao LR  Qi YF  Li ZQ  Tang CS 《生理学报》2001,53(5):364-368
通过观察下述五个指标,评价肾上腺髓质素(adrenomedullin,Adm)对大鼠损伤性心肌肌浆网功能的改善程度左心室压力最大变化速率(±dp/dtmax)、肌浆网钙摄取和释放及钙泵活性.皮下注射异丙肾上腺素(isoproterenol,ISO,69μmol/kg体重)制备大鼠心肌损伤坏死模型.摘取心脏后用Adm灌流,观察左心室压力最大变化速率(±dp/dtmax);制备并提纯心肌肌浆网(sarcoplasmicreticulum,SR)膜,测定SRCa2+摄取和释放速率、SR钙泵活性和钙通道蛋白~3H-ryanodine受体的最大结合量.结果发现,5×10-5mol/LAdm灌流能使ISO损伤的大鼠心脏左室±dp/dtmax分别增加16.9%(2?135±281vs1?980±302)和29.2%(1?375±267vs1?064±355,均P<0.05);SRCa2+摄取和释放率分别增加23.0%(15.0±1.4vs12.2±1.2)和43.5%(6.6±1.0vs4.6±0.6,均P<0.01);SRCa2+-ATPase活性和~3H-ryanodine受体最大结合量(Bmax)分别增加24.2%(P<0.01)和42.2%(P<0.05).提示Adm对ISO诱导的大鼠心肌损伤具有保护作用,其机制可能与Adm增加SRCa2+-ATPase活性、增加~3H-ryanodine所致SRCa2+摄取和释放升高有关.外源性给予Adm对损伤心肌可能具有临床治疗作用.  相似文献   

8.
The effect of antioxidant--alpha-tocopherol--on Ca2+-transporting system in sarcoplasmic reticulum (SR) of the rabbit skeletal muscles was studied in hypercholesterolemia (HC). alpha-tocopherol administration to animals with HC produced a break on the curve of temperature dependence of Ca-ATPase activity at about 20 degrees C, that disappeared in HC, increased the rate of "rapid" SH-group binding by thiol reagents, and normalized the level of unsaturated fatty acids in SR membranes without altering phospholipid content. It is suggested that the damage of Ca-ATPase in HC is mainly due to activation of lipid peroxidation.  相似文献   

9.
The effects of temperature on reconstituted sarcoplasmic Ca-ATPase preparations from vitamin E-deficient dystrophic and control rabbits were studied. Delipidated Ca-ATPase from vitamin E-deficient sarcoplasmic reticulum (SR) reconstituted with lipid of control SR exhibited properties similar to preparations reconstituted with lipid of vitamin E-deficient SR, namely low Ca-ATPase activity and a linear Arrhenius plot of enzyme activity. On the other hand, delipidated control SR Ca-ATPase reconstituted with lipid of vitamin E-deficient SR showed a reduction in activity but retained the discontinuity in the Arrhenius plot. These results indicated that the altered property of sarcoplasmic Ca-ATPase from vitamin E-deficient dystrophic rabbit was associated with the protein and not the lipid component.  相似文献   

10.
Developmental changes in cardiac sarcoplasmic reticulum in sheep   总被引:4,自引:0,他引:4  
Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60% (p less than 0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30% (p less than 0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p less than 0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alterations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.  相似文献   

11.
Ca-ATPase activity in sarcoplasmic reticulum (SR) membranes isolated from skeletal muscles of the typical hibernator, the ground squirrel Spermophilus undulatus, is about 2-fold lower than that in SR membranes of rats and rabbits and is further decreased 2-fold during hibernation. The use of carbocyanine anionic dye Stains-All has revealed that Ca-binding proteins of SR membranes, histidine-rich Ca-binding protein and sarcalumenin, in ground squirrel, rat, and rabbit SR have different electrophoretic mobility corresponding to apparent molecular masses 165, 155, and 170 kDa and 130, 145, and 160 kDa, respectively; the electrophoretic mobility of calsequestrin (63 kDa) is the same in all preparations. The content of these Ca-binding proteins in SR membranes of the ground squirrels is decreased 3–4 fold and the content of 55, 30, and 22 kDa proteins is significantly increased during hibernation.  相似文献   

12.
Thyrotoxicosis in rabbits was induced by prolonged intraperitoneal injection of L-thyroxin. The development of thyroxicosis was assoiated with a decreased Ca2+ accumulation rate by sarcoplasmic reticulum (SR) fragments and a lowered Ca2+ dependent ATPase activity. As compared to the analogous parameters in normal animals. Ca2+ accumulation rate and ATPase activity of thyrotoxicosis animals decreased by 60 and 25%, respectively. The changes in the specific parameters of SR were also observed during incubation of normal SR samples in the medium containing thyroxin (10-5 M). The changes seen in SR functioning in thyrotoxicosis animals are likely to be related to structural rearrangements of lipoprotein surroundings of Ca-ATPase.  相似文献   

13.
Hypocaloric feeding (HCF) depresses heart function causing cardiac atrophy, bradycardia, and decreased cardiac output. We tested the hypothesis that HCF results in decreased myocardial Ca- and ATP cycling. We reduced protein-calorie intake of adult rats by 20% for 7 days and then allowed them to recover for 3 days. Changes in ionized Ca concentration (nM/s) of 2.5% myocardial homogenates that were attributable to the Ca-ATPase pump and Ca-release channel (CRC), respectively, of the sarcoplasmic reticulum (SR) were depressed 41 and 85% by HCF from 61.6±9.4 and 24.7±3.3, to 36.1±2.8 and 3.6±2.9. Activity of the Ca-pump was restored after 3 days of refeeding, whereas the CRC remained 23% depressed (all p<0.05). Additionally, the CRC activity was inhibited to a 3-fold greater extent than controls by HCF, but was disinhibited within one day of refeeding. The greater effect on CRC than Ca-pump activity resulted in net Ca-uptake being unaffected by HCF. In addition to depression of Ca-cycling, ATP sythetase and total ATPase activities (IU/g), respectively, were depressed 20 and 15% by HCF from 174±19 and 51.3±3.8 to 140±15 and 43.7±4.7, but were restored to control values within one day of refeeding. We conclude that HCF produces a compensatory, reversible, and asymmetric downregulation and inhibition of Ca-cycling, with the CRC being preferentially affected.  相似文献   

14.
Most of the calcium that activates contraction in the heart comes from the sarcoplasmic reticulum (SR) and it is therefore essential to control the SR Ca content. SR Ca content reflects the balance between uptake (via the SR Ca-ATPase, SERCA) and release, largely via the ryanodine receptor (RyR). Unwanted changes of SR Ca are prevented because, for example, an increase of SR Ca content increases the amplitude of the systolic Ca transient and this, in turn, results in increased loss of Ca from and decreased Ca entry into the cell thereby restoring cell and SR Ca towards control levels. We discuss the parameters that affect the steady level of SR Ca and how these may change in heart failure. Finally, we discuss disordered Ca regulation with particular emphasis on the condition of alternans where successive heartbeats alternate in amplitude. This behaviour can be explained by excessive feedback gain in the processes controlling SR Ca.  相似文献   

15.
The tetracaine and cinchocaine in concentration less than 2 mM and 0.5 mM, respectively, stimulate ATP-dependent Ca-loading by enhancing the initial rate of Ca2+-accumulation, do not affect the Ca2+-binding and Ca-ATPase activity of sarcoplasmic reticulum vesicles. These data suggest blocking of Ca2+-efflux from vesicles which occurs during Ca-accumulation. Higher concentrations of the same compounds (above 2 mM and 0.5 mM for tetracaine and cinchocaine, respectively) caused inhibition of the Ca-ATPase activity and decreased the ability of SR vesicles to retain Ca2+, probably, due to their nonspecific lipophilic action.  相似文献   

16.
The total Ca-ATPase activity in the sarcoplasmic reticulum (SR) membrane fraction isolated from skeletal muscles of winter hibernating ground squirrel Spermophilus undulatus is 2.2-fold lower than in preparations obtained from summer active animals. This is connected in part with 10% decrease of the content of Ca-ATPase protein in SR membranes. However, the enzyme specific activity calculated with correction for its content in SR preparations is still 2-fold lower in hibernating animals. Analysis of the protein composition of SR membranes has shown that in addition to the decrease in Ca-ATPase content in hibernating animals, the amount of SR Ca-release channel (ryanodine receptor) is decreased 2-fold, content of Ca-binding proteins calsequestrin, sarcalumenin, and histidine-rich Ca-binding protein is decreased 3-4-fold, and the amount of proteins with molecular masses 55, 30, and 22 kD is significantly increased. Using the cross-linking agent cupric–phenanthroline, it was shown that in SR membranes of hibernating ground squirrels Ca-ATPase is present in a more aggregated state. The affinity of SR membranes to the hydrophilic fluorescent probe ANS is higher and the degree of excimerization of the hydrophobic probe pyrene is lower (especially for annular lipids) in preparations from hibernating than from summer active animals. The latter indicates an increase in the microviscosity of the lipid environment of Ca-ATPase during hibernation. We suggest that protein aggregation as well as the changes in protein composition and/or in properties of lipid bilayer SR membranes can result in the decrease of enzyme activity during hibernation.  相似文献   

17.
mRNA levels for the type I and type II isoforms of sarcoplasmic reticulum (SR) Ca-ATPase were determined in soleus (SOL) and extensor digitorum longus (EDL) muscle of euthyroid (normal), hypothyroid, and hyperthyroid rats. Total Ca-ATPase mRNA content of hyperthyroid muscle was 1.5-fold (EDL) and 6-fold (SOL) higher compared to hypothyroid muscle, with corresponding increases in total SR Ca-ATPase activity. EDL contained only type II Ca-ATPase mRNA. In SOL type I mRNA was the major form in hypothyroidism (98%), but the type II mRNA content was stimulated 150-fold by T3, accounting for 50% of the Ca-ATPase mRNA in hyperthyroidism.  相似文献   

18.
Using the rapid filtration technique to investigate Ca2+ movements across the sarcoplasmic reticulum (SR) membrane, we compare the initial phases of Ca2+ release and Ca2+ uptake in malignant hyperthermia susceptible (MHS) and normal (N) pig SR vesicles. Ca2+ release is measured from passively loaded SR vesicles. MHS SR vesicles present a 2-fold increase in the initial rate of calcium release induced by 0.3 microM Ca2+ (20.1 +/- 2.1 vs. 6.3 +/- 2.6 nmol mg-1 s-1). Maximal Ca2+ release is obtained with 3 microM Ca2+. At this optimal concentration, rate of Ca2+ efflux in absence of ATP is 55 and 25 nmol mg-1 s-1 for MHS and N SR, respectively. Ca(2+)-induced Ca2+ release is inhibited by Mg2+ in a dose-dependent manner for both MHS and N pig SR vesicles (K1/2 = 0.2 mM). Caffeine (5 mM) and halothane (0.01% v/v) increase the Ca2+ sensitivity of Ca(2+)-induced Ca2+ release. ATP (5 mM) strongly enhances the rate of Ca2+ efflux (to about 20-40-fold in both MHS and N pig SR vesicles). Furthermore, both types of vesicles do not differ in their high-affinity site for ryanodine (Kd = 12 nM and Bmax = 6 pmol/mg), lipid content, ATPase activity and initial rate of Ca2+ uptake (0.948 +/- 0.034 vs. 0.835 +/- 0.130 mumol mg-1 min-1 for MHS and N SR, respectively). Our results show that MH syndrome is associated to a higher rate of Ca2+ release in the earliest phase of the calcium efflux.  相似文献   

19.
Dilated cardiomyopathy is a disease of the heart muscle resulting from a diverse array of conditions that damages the heart and impairs myocardial function. Heart failure occurs when the heart is unable to pump blood at a rate which can accommodate the heart muscle's metabolic requirements. Several signaling pathways have been shown to be involved in the induction of cardiac disease and heart failure. Many of these pathways are linked to cardiac sarcoplasmic reticulum (SR) Ca cycling directly or indirectly. A large body of evidence points to the central role of abnormal Ca handling by SR proteins, Ca-ATPase pump (SERCA2a) and phospholamban (PLN), in pathophysiological heart conditions, compromising the contractile state of the cardiomyocytes. This review summarizes studies which highlight the key role of these two SR proteins in the regulation of cardiac function, the significance of SERCA2a-PLN interactions using transgenic approaches, and the recent discoveries of human PLN mutations leading to disease states. Finally, we will discuss extrapolation of experimental paradigms generated in animal models to the human condition.  相似文献   

20.
Sarcoplasmic reticulum (SR) fragments from the skeletal muscles of rabbit with marked atherosclerosis possessed decreased Ca2+-accumulating capacity. Lowering of transport efficiency, namely reduction of the Ca/ATP ratio from 1.9--normal value--to 0.9 during the experiment at 26 degrees C was accompanied by activation of Ca-ATPase and simultaneously of the rate of Ca2+ outflux from the SR. Arrhenius plots of Ca-ATPase temperature dependence characterized under normal conditions by a break at 20--21 degrees C was linearized under hypercholesterolemia. At the same time there was a rise (from 0.03 under normal conditions to 0.15 in atherosclerosis) of cholesterol/protein ratio in the SR membrane preparations. Activation energy for Ca-ATPase crude membranes under normal conditions was equal to 15.6 and 28.7 kcal/mol above and below the break point respectively; this value for Ca-ATPase of membranes with increased cholesterol level was 19 kcal/mol for all the temperatures investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号