首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
探讨肝细胞癌(HCC)中非典型性E2F家族成员E2F7在肝癌细胞生长、分化中的作用及可能涉及的分子机制.本研究运用实时荧光定量PCR检测38例原发性肝细胞癌及对应的癌旁组织中E2F7基因mRNA的表达情况;分别通过基因过表达和RNA干扰技术上调或下调E2F7基因表达,并运用实时荧光定量PCR和Western印迹检测肝癌细胞株MHCC-H中β-catenin及其靶基因cmyc的表达情况;双荧光素酶报告基因系统检测E2F7对Wnt/β-catenin信号通路活性的影响;核浆分离实验检测过表达E2F7基因对β-catenin入核的影响;免疫共沉淀实验检测异位表达E2F7与内源β-catenin的相互作用.结果显示,肝细胞癌组织中E2F7基因的表达量显著高于相应的癌旁组织(P0.001);转录因子E2F7可与β-catenin相互作用并促进β-catenin进入细胞核.转录因子E2F7可以促进Wnt/β-catenin信号通路的活性.  相似文献   

8.
9.
Regulation of the Wnt signaling pathway by disabled-2 (Dab2)   总被引:5,自引:0,他引:5  
The adaptor molecule Disabled-2 (Dab2) has been shown to link cell surface receptors to downstream signaling pathways. Using a small-pool cDNA screening strategy, we identify that the N-terminal domain of Dab2 interacts with Dishevelled-3 (Dvl-3), a signaling mediator of the Wnt pathway. Ectopic expression of Dab2 in NIH-3T3 mouse fibroblasts attenuates canonical Wnt/beta-catenin-mediated signaling, including accumulation of beta-catenin, activation of beta-catenin/T-cell-specific factor/lymphoid enhancer-binding factor 1-dependent reporter constructs, and endogenous cyclin D1 induction. Wnt stimulation leads to a time-dependent dissociation of endogenous Dab2-Dvl-3 and Dvl-3-axin interactions in NIH-3T3 cells, while Dab2 overexpression leads to maintenance of Dab2-Dvl-3 association and subsequent loss of Dvl-3-axin interactions. In addition, we find that Dab2 can associate with axin in vitro and stabilize axin expression in vivo. Mouse embryo fibroblasts which lack Dab2 exhibit constitutive Wnt signaling as evidenced by increased levels of nuclear beta-catenin and cyclin D1 protein levels. Based on these results, we propose that Dab2 functions as a negative regulator of canonical Wnt signaling by stabilizing the beta-catenin degradation complex, which may contribute to its proposed role as a tumor suppressor.  相似文献   

10.
11.
12.
13.
14.
15.
The Wnt/β-catenin signaling pathway has been identified as one of the predominantly upregulated pathways in castration-resistant prostate cancer (CRPC). However, whether targeting the β-catenin pathway will prove effective as a CRPC treatment remains unknown. Polo-like kinase 1 (Plk1) is a critical regulator in many cell cycle events, and its level is significantly elevated upon castration of mice carrying xenograft prostate tumors. Indeed, inhibition of Plk1 has been shown to inhibit tumor growth in several in vivo studies. Here, we show that Plk1 is a negative regulator of Wnt/β-catenin signaling. Plk1 inhibition or depletion enhances the level of cytosolic and nuclear β-catenin in human prostate cancer cells. Furthermore, inhibition of Wnt/β-catenin signaling significantly potentiates the antineoplastic activity of the Plk1 inhibitor BI2536 in both cultured prostate cancer cells and CRPC xenograft tumors. Mechanistically, axin2, a negative regulator of the β-catenin pathway, serves as a substrate of Plk1, and Plk1 phosphorylation of axin2 facilitates the degradation of β-catenin by enhancing binding between glycogen synthase kinase 3β (GSK3β) and β-catenin. Plk1-phosphorylated axin2 also exhibits resistance to Cdc20-mediated degradation. Overall, this study identifies a novel Plk1-Wnt signaling axis in prostate cancer, offering a promising new therapeutic option to treat CRPC.  相似文献   

16.
E2F1 pathways to apoptosis   总被引:6,自引:0,他引:6  
Ginsberg D 《FEBS letters》2002,529(1):122-125
  相似文献   

17.
18.
Lee JS  Hur MW  Lee SK  Choi WI  Kwon YG  Yun CO 《PloS one》2012,7(5):e36520
Aberrant activation of the Wnt pathway contributes to human cancer progression. Antagonists that interfere with Wnt ligand/receptor interactions can be useful in cancer treatments. In this study, we evaluated the therapeutic potential of a soluble Wnt receptor decoy in cancer gene therapy. We designed a Wnt antagonist sLRP6E1E2, and generated a replication-incompetent adenovirus (Ad), dE1-k35/sLRP6E1E2, and a replication-competent oncolytic Ad, RdB-k35/sLRP6E1E2, both expressing sLRP6E1E2. sLRP6E1E2 prevented Wnt-mediated stabilization of cytoplasmic β-catenin, decreased Wnt/β-catenin signaling and cell proliferation via the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase pathways. sLRP6E1E2 induced apoptosis, cytochrome c release, and increased cleavage of PARP and caspase-3. sLRP6E1E2 suppressed growth of the human lung tumor xenograft, and reduced motility and invasion of cancer cells. In addition, sLRP6E1E2 upregulated expression of epithelial marker genes, while sLRP6E1E2 downregulated mesenchymal marker genes. Taken together, sLRP6E1E2, by inhibiting interaction between Wnt and its receptor, suppressed Wnt-induced cell proliferation and epithelial-to-mesenchymal transition.  相似文献   

19.
20.
Activation of Wnt signaling through beta-catenin/TCF complexes is a key event in the development of various tumors, in particular colorectal and liver tumors. Wnt signaling is controlled by the negative regulator conductin/axin2/axil, which induces degradation of beta-catenin by functional interaction with the tumor suppressor APC and the serine/threonine kinase GSK3beta. Here we show that conductin is upregulated in human tumors that are induced by beta-catenin/Wnt signaling, i.e., high levels of conductin protein and mRNA were found in colorectal and liver tumors but not in the corresponding normal tissues. In various other tumor types, conductin levels did not differ between tumor and normal tissue. Upregulation of conductin was also observed in the APC-deficient intestinal tumors of Min mice. Inhibition of Wnt signaling by a dominant-negative mutant of TCF downregulated conductin but not the related protein, axin, in DLD1 colorectal tumor cells. Conversely, activation of Wnt signaling by Wnt-1 or dishevelled increased conductin levels in MDA MB 231 and Neuro2A cells, respectively. In time course experiments, stabilization of beta-catenin preceded the upregulation of conductin by Wnt-1. These results demonstrate that conductin is a target of the Wnt signaling pathway. Upregulation of conductin may constitute a negative feedback loop that controls Wnt signaling activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号