共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-affinity binding site for [3H]Ro 5–4864 has been solubilized from rat kidney using 1% Triton X-100. After lowering the concentration of detergent and using a poly(ethylene glycol) γ-globulin assay, it has been possible to demonstrate solubilization of about 90% of the binding sites. A single soluble class of binding sites with a of 1.8 nM is found. The order of potency of benzodiazepines is identical for the solubilized receptor and the membrane-bound form. Gel filtration revealed a major peak of binding activity with apparent molecular weight of 215000 and a Stokes' radius of 5.03 nm. 相似文献
2.
Gutiérrez S Mukdsi JH Aoki A Torres AI Soler AP Orgnero EM 《Cell and tissue research》2007,327(1):121-132
We have investigated the expression of receptors for insulin and insulin-like growth factor 1 (IGF-1) in rat pituitary cells in vitro and examined the morphological and proliferative changes induced in adenohypophyseal cells by insulin and IGF-1. The proliferation of lactotrophs was determined by double-immunostaining for bromodeoxyuridine and prolactin. Incubation with insulin (10, 100 or 1000 ng/ml) or IGF-1 (5, 30 or 100 ng/ml) for 48 or 72 h significantly increased the number of lactotrophs undergoing mitosis. Co-incubation of insulin or IGF-1 with genistein (25 μM), an inhibitor of the tyrosine kinase receptor, reduced the proliferation of lactotrophs elicited by the hormone and the growth factor. The receptors for insulin and IGF-1 were localized in intact pituitary cells by ultrastructural immunocytochemistry with the colloidal gold-protein A technique. Gonadotrophs expressed both receptors, specific labelling being restricted to this cell type. Electron-microscopical observations of pituitary cell cultures incubated with insulin or IGF-1 revealed gonadotroph cells exhibiting the fine-structural features of enhanced protein synthetic activity. These findings suggest that both insulin and IGF-1 are able to induce the proliferation of lactotrophs through an indirect mechanism mediated by a factor synthesized by gonadotroph cells, in addition to stimulating the biosynthetic activity of the gonadotroph in a direct manner.This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT). 相似文献
3.
Elisabet Boija 《生物化学与生物物理学报:生物膜》2006,1758(5):620-626
In order to elucidate the modes of interaction between lignin precursors and membranes, we have studied the influence of temperature, lipid composition and buffer composition on the partitioning of monolignol and dilignol model substances into phospholipid bilayers. The partitioning was determined by immobilized liposome chromatography, which is an established method for studies of pharmaceutical drugs but a new approach in studies of lignin synthesis. The temperature dependence of the retention and the effect of a high ammonium sulfate concentration in the mobile phase demonstrated that the interaction involved both hydrophobic effects and polar interactions. There was also a good correlation between the partitioning and the estimated hydrophobicity, in terms of octanol/water partitioning. The partitioning behavior of the model substances suggests that passive diffusion over the cell membrane is a possible transport route for lignin precursors. This conclusion is strengthened by comparison of the present results with the partitioning of pharmaceutical drugs that are known to pass cell membranes by diffusion. 相似文献
4.
Włodzimierz Maśliński Ewa Grabczewska Jan Ryżewski 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,633(2):269-273
The conditions of the binding of acetylcholine have been studied in lymphocytes isolated from rat peripheral lymph nodes. Acetylcholine appeared to penetrate the lymphocyte membrane. We have confirmed the presence of muscarinic receptors, which, however, are not involved in transport of acetylcholine through the membrane. The receptors of the nicotine type on lymphocytes are demonstrated by the decrease of acetylcholine binding in the presence of a specific antagonist, tubocurarine. These nicotinic receptors may be involved in acetylcholine transport into the cells. 相似文献
5.
Dulhunty AF Haarmann CS Green D Laver DR Board PG Casarotto MG 《Progress in biophysics and molecular biology》2002,79(1-3):45-75
Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca2+ channels in the surface/transverse tubular membrane and ryanodine receptor Ca2+ release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either side of a narrow junctional gap that separates the external and internal membrane systems and are arranged so that bi-directional structural and functional coupling can occur between the proteins. There is strong evidence for a physical interaction between the two types of channel protein in skeletal muscle. This evidence is derived from studies of excitation–contraction coupling in intact myocytes and from experiments in isolated systems where fragments of the dihydropyridine receptor can bind to the ryanodine receptors in sarcoplasmic reticulum vesicles or in lipid bilayers and alter channel activity. Although micro-regions that participate in the functional interactions have been identified in each protein, the role of these regions and the molecular nature of the protein–protein interaction remain unknown. The trigger for Ca2+ release through ryanodine receptors in cardiac muscle is a Ca2+ influx through the L-type Ca2+ channel. The Ca2+ entering through the surface membrane Ca2+ channels flows directly onto underlying ryanodine receptors and activates the channels. This was thought to be a relatively simple system compared with that in skeletal muscle. However, complexities are emerging and evidence has now been obtained for a bi-directional physical coupling between the proteins in cardiac as well as skeletal muscle. The molecular nature of this coupling remains to be elucidated. 相似文献
6.
There are numerous methods designed to monitor brain neuropathologies resulting from a wide arsenal of insults. Regardless of the cause of neuronal death, reactive glial cells always appear at and around the site of degeneration. These cells are distinguished by the exceptional abundance of peripheral benzodiazepine receptors, particularly compared with surrounding neurons. Measuring the binding of specific ligands to these peripheral benzodiazepine receptors offers a unique indirect marker for reliable damage assessment in the CNS and a faithful indicator for the accompanying cognitive deficits. 相似文献
7.
Biegon A Alvarado M Budinger TF Grossman R Hensley K West MS Kotake Y Ono M Floyd RA 《Journal of neurochemistry》2002,82(4):924-934
Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hafter endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (two- to threefold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (> 50%) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition (approx. 25% decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease. 相似文献
8.
Constantinos J. Limas Catherine Limas 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,582(3):533-536
Responsiveness to inotropic agents is altered in hypertension and may contribute to its initiation and maintenance. A biochemical basis for this change was provided by the observation that the number of β-adrenergic receptors, as reflected in specific [3H]dihydroalprenolol binding, was diminished in both arteries and veins of spontaneously hypertensive rats. There was no change in the affinity of dihydroalprenolol for the binding sites or in the capacity of isoproterenol to displace dihydroalprenolol. The decline in β-adrenergic receptor numbers is not secondary to blood pressure elevation but may, instead, contribute to the pathogenesis of hypertension. 相似文献
9.
Tyramine and dopamine are taken up by rat platelets through the serotonin uptake mechanism while phenethylamine is not taken up. This indicates that an aromatic hydroxyl group is a structural requirement for the uptake of phenethylamine derivatives by rat platelets. Although none of these phenethylamine derivatives induce platelet shape change, they inhibit serotonin-induced shape change and serotonin uptake with the same relative potency (). This suggests that the receptors controlling serotonin uptake and serotonin-induced shape change have a common structural component that binds phenethylamine derivatives. However, the fact that phenethylamine derivatives activate the serotonin uptake mechanism but do not induce platelet shape change suggests that serotonin uptake and serotonin-induced shape change are mediated by two distinct activation sites of serotonin receptors. 相似文献
10.
Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity 总被引:6,自引:0,他引:6
The peripheral benzodiazepine receptor (PBR) is currently used as a marker of inflammation and gliosis following brain injury. Previous reports suggest that elevated PBR levels in injured brain tissue are specific to activated microglia and infiltrating macrophages. We have produced hippocampal lesions using the neurotoxicant trimethyltin (TMT) to examine the cellular and subcellular nature of the PBR response. Degenerating, argyrophilic pyramidal neurons were observed in the hippocampus at 2 and 14 days after TMT exposure. Reactive microglia were also evident at both times with a maximal response observed at 14 days, subsiding by 6 weeks. Astrocytosis was observed at 14 days and 6 weeks, but not 2 days, after TMT administration, suggesting that the onset of the astroglia response is delayed, but more persistent, compared with microgliosis. Morphological evidence from [3H]PK11195 microautoradiography and PBR immunohistochemistry indicates that both astrocytes and microglia are capable of expressing high levels of PBR after injury. This was confirmed by double labeling of either Griffonia simplicifolia isolectin B4, a microglial-specific marker, or glial fibrillary acidic protein, an astrocyte-specific protein with PBR fluorescence immunohistochemistry. These results demonstrate that PBR expression is increased after brain injury in both activated microglia and astrocytes. Our findings also provide the first evidence for in situ nuclear localization of PBR in glial cells. 相似文献
11.
The cellular distribution of parvalbumin immunoreactivity in the vestibular peripheral system of mouse, rat, and guinea pig was investigated by light and electron microscopy. Parvalbumin was found in all neurons of the vestibular ganglia of these species but in the sensory epithelia immunoreactivity was restricted to type I hair cells localized exclusively in the central areas. The very intense staining pattern was similar in the cristae ampullares and utricles of all three species but a faint immunoreaction was also detectable in sensory cells of peripheral areas of rat cristae. The parvalbumin-immunoreactive type I sensory cells are connected by nerve fibres of the calyx unit type which are known selectively to contain calretinin. 相似文献
12.
Myocardial sodium-pump activity was examined from ouabain-sensitive 86Rb+ uptake using myocytes isolated from guinea-pig heart. Either sodium loading or the sodium ionophore, monensin, increased 86Rb+ uptake by over 400%, indicating that the amount of Na+ available to the pump is the primary determinant of its activity, and that the sodium pump has a substantial reserve capacity in quiescent myocytes. Moreover, the degree of the above stimulation is markedly higher than corresponding values reported with multicellular preparations, suggesting that diffusion barriers make it impossible to observe the capacity of the sodium pump in the latter preparations. Removal of extracellular Ca2+ increased ouabain-sensitive 86Rb+ uptake, probably by enhancing turnover of the sodium pump rather than increasing availability of Na+ to the pump. 相似文献
13.
John R. Hubbard Mohammed Kalimi 《Biochimica et Biophysica Acta (BBA)/General Subjects》1983,755(3):363-368
Heparin dramatically enhanced the rate of unbound glucocorticoid receptor inactivation in vitro in a concentration, time and temperature-dependent manner. Control specific binding decreased only about 25% after incubation for 6 h at 4°C. However in the presence of heparin (40 μg per ml cytosol) receptor binding decreased about 75%. At 25°C liver receptor specific binding was found to have a half0life of about 60 min in control cytosol. However, in the presence of heparin (40 μg per ml cytosol) the glucocorticoid receptor had a half-life of only 15 min at 25°C. Interestingly, 10 mM molybdate (with or without 5 mM dithiothreitol) greatly inhibited heparin-dependent receptor inactivation at 4°C. Dithiothreitol (alone) significantly stabilized receptor binding in control samples at 4°C, but provided no protection from heparin-dependent receptor inactivation. Heparin had no apparent inactivating effect on prebound glucocorticoid receptor complexes at 4°C. Interestingly however, heparin altered the sedimentation coefficient of prebound hepatic glucococorticoid-receptor complexes in low salt gradients from 7–8 S to about 3–4 S. When molybdate plus dithiothreitol were added with heparin, the sedimentation coefficient was found to be approx. 6—7 S. These results demonstrate that heparin, which is often used pharmacologically and which occurs naturally in animal tissues, has significant effects on liver glucocorticoid receptors in vitro. 相似文献
14.
Mariko Shimamura Tadahiko Hazato Takashi Katayama 《Biochimica et Biophysica Acta (BBA)/General Subjects》1984,798(1):8-13
An enkaphalin-degrading aminopeptidase using Leu-enkephalin as a substrate was purified about 4100-fold from guinea pig serum. The purified preparation was apparently homogenous, showing on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was approx. 92 000. The amino-peptidase had a pH optimum of 7.0 with Km values of 0.12 mM and 0.18 mM for Leu- and Met-enkephalin, respectively. The enzyme hydrolyzed neutral, basic and aromatic amino acid β-naphthylamides, but did not the acidic one. The enzyme was inhibited strongly by metal-chelating agents, bestatin and amastatin and weakly by puromycin. Among several biologically active peptides, angiotensin III and substance P strongly inhibited the enzyme. 相似文献
15.
Mohammed Kalimi John Hubbard 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,719(3):488-494
0.1–0.3 M sodium thiocyanate greatly enhanced the rate of inactivation of unbound rat hepatic glucocorticoid receptors in vitro at 4°C. Prior treatment of the unbound glucocorticoid receptor with 10 nM molybdate (at 25°C for 30 min) protected the receptor from 0.3 M KCl, but not from 0.3 M NaSCN inactivation. When the [3H]dexamethasone-receptor complex was examined on sucrose density gradients containing 0.1 M NaSCN, the receptor sedimented as a 4 S complex rather than the 7 S form observed in 0.1 M KCl gradients. NaSCN was found to be more effective in the extraction of both in vivo and in vitro nuclear-bound [3H]dexamethasone-receptor complexes than KCl. At a concentration of 0.3 M, NaSCN extracted most of the specific nuclear-bound receptor. 50 mM NaSCN significantly blocked the thermal activation of preformed [3H]dexamethasone-receptor complexes. The chaotropic salt, NaSCN, appears therefore to have significant effects on glucocorticoid receptors in vitro. In addition, NaSCN appears to be a useful agent in quantitative extraction of steroid from nuclear-bound steroid-receptor complexes. 相似文献
16.
E. A. Van der Zee B. Buwalda J. H. Strubbe A. D. Strosberg P. G. M. Luiten 《Cell and tissue research》1992,269(1):99-106
Summary Immunocytochemical application of the antimuscarinic acetylcholine receptor antibody M35 to pancreas tissue revealed the target areas for the parasympathetic nervous system. Immunoreactivity in the endocrine pancreas was much higher than that in the exocrine part. Moreover, the endocrine cells at the periphery of the islets of Langerhans displayed the highest level of immunoreactivity. Based on these findings in the mantle of the islets, two types of islets have been distinguished: type-I islets with intensely stained mantle cells, and type-II islets with a much lower concentration of these cells. On average, type-I islets were larger (244.8 m±6.1 SEM) than type-II islets (121.5 m±3.8 SEM). M35-immunoreactivity was present on the majority of D cells, which were characterized by their immunoreactivity to somatostatin [of 446 D cells 356 (79.8%) were M35-immunopositive]. However, only a small proportion of the intensely stained mantle cells belonged to the D cell population. Therefore, it is concluded that the majority of the intensely stained mantle cells represent glucagon-secreting A and/or pancreatic polypeptide-secreting F cells. The intensity of M35-immunoreactivity at the periphery and central core of the islets paralleled the density of cholinergic innervation, suggesting a positive correlation between the intensity of cholinergic transmission and the number of muscarinic acetylcholine receptors at the target structures. The present study further revealed some striking parallels for the muscarinic acetylcholine receptor characteristics between the (endocrine) pancreas and the central nervous system. 相似文献
17.
Summary Preimplantation-stage embryos were transferred to the anterior eye chamber of recipient rats and guinea-pigs. After implantation had occurred the influence of the embryo on the iris vasculature was examined ultrastructurally. In both species, the earliest effect of embryonic implantation was an increased stromal oedema. Under increasing embryonic influence the vascular endothelial cells showed an increased number of projections into the vascular lumen, while in the rat, endothelial projections were also found pushing back into the basement membrane. In the rat, the endothelium became very irregular in thickness prior to complete disintegration and loss during more advanced stages of implantation. Rat embryonic trophoblast was found invading iris vasculature, particularly in areas where the iridial endothelium was partially or completely missing. Other cells in the iris, including the stroma, appeared to be less affected. In the guinea-pig, however, trophoblast cells appeared to be capable of invading the vasculature by displacing endothelial cells that still appeared morphologically normal. 相似文献
18.
The distribution of glutamate and aspartate and the mitochondrial membrane potential (Δψ) were studied in isolated rat heart mitochondria and in the intact perfused rat heart. The diffusion potential imposed by the glutamate-aspartate exchange through mediation of the electrogenic glutamate-aspartate translocator attained a value close to the mitochondrial Δψ measured from the distribution of triphenylmethylphosphonium ion (TPMP+) both in isolated mitochondria and in intact myocardium. Distributions of the Δψ probe and metabolites were determined by subcellular fractionation of the heart muscle in a non-aqueous medium. The results indicate that the glutamate-aspartate translocator is in near equilibrium in the myocardium. The diffusion potential of the glutamate-aspartate exchange, and the mitochondrial/cytosolic difference in the redox potentials of the free NAD+/NADH pools are equal allowing for experimental error. These data obtained from intact tissue can therefore be interpreted as supporting the notion of the transmembrane uphill transport of reducing equivalent from the cytosolic free NAD+/NADH pool being driven by the malate-aspartate cycle energized by the mitochondrial Δψ. 相似文献
19.
Effects of fasting on hepatic catecholamine receptors 总被引:1,自引:0,他引:1
20.
Extracellular nucleotides have been identified as important signaling molecules. These nucleotides act on the P2 family of receptors that respond by either forming an ion-channel or by activation of a signal transduction cascade, both of which enable a cellular response. Although a role for P2 receptors in inflammation has been implied, the local expression pattern and kinetics of these receptors at sites of inflammation are not known. Therefore, we have studied the expression of the P2 receptors expressed by inflammatory cells or by cells in the vasculature, with special attention to P2X1R, P2X7R, P2Y1R, and P2Y2R. As a suitable model for studying inflammatory reactions, we have employed the foreign body reaction (FBR), a sterile inflammatory reaction induced by implanting degradable cross-linked dermal sheep collagen disks subcutaneously in the rat. We show that, in the vasculature, the expression of P2X7R, P2Y1R, and P2Y2R increase until day 2. The expression of P2X7R and P2Y1R on macrophages and giant cells increased during the course of the inflammatory reaction which was studied for 21 days. The expression of the P2Y2R on macrophages and giant cells inside the foreign body increases with time, whereas the expression on macrophages in the surrounding tissue is maximal at day 5. The expression of P2X1R remains at a constant low level. The upregulation of P2X7R, P2Y1R, and P2Y2R over time suggests a regulatory function for these receptors in inflammation. 相似文献