首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most work examining muscle function during anuran locomotion has focused largely on the roles of major hind limb extensors during jumping and swimming. Nevertheless, the recovery phase of anuran locomotion likely plays a critical role in locomotor performance, especially in the aquatic environment, where flexing limbs can increase drag on the swimming animal. In this study, I use kinematic and electromyographic analyses to explore the roles of four anatomical flexor muscles in the hind limb of Bufo marinus during swimming: m. iliacus externus, a hip flexor; mm. iliofibularis and semitendinosus, knee flexors; and m. tibialis anticus longus, an ankle flexor. Two general questions are addressed: (1) What role, if any, do these flexors play during limb extension? and (2) How do limb flexors control limb flexion? Musculus iliacus externus exhibits a large burst of EMG activity early in limb extension and shows low levels of activity during recovery. Both m. iliofibularis and m. semitendinosus are biphasically active, with relatively short but intense bursts during limb extension followed by longer and typically weaker secondary bursts during recovery. Musculus tibialis anticus longus becomes active mid way through recovery and remains active through the start of extension in the next stroke. In conclusion, flexors at all three joints exhibit some activity during limb extension, indicating that they play a role in mediating limb movements during propulsion. Further, recovery is controlled by a complex pattern of flexor activation timing, but muscle intensities are generally lower, suggesting relatively low force requirements during this phase of swimming.  相似文献   

2.
3.
The Green-striped burrowing frog, Cyclorana alboguttata survives extended drought periods by burrowing underground and aestivating. These frogs remain immobile within cocoons of shed skin and mucus during aestivation and emerge from their burrows upon heavy rains to feed and reproduce. Extended periods of immobilisation in mammals typically result in muscle atrophy and a decrease in muscle performance. We examined the effect of aestivation and hence prolonged immobilisation, on skeletal muscle mass, in vitro muscle performance, and locomotor performance in C. alboguttata. Frogs were aestivated in soil for 3 months and were compared with control animals that remained active, were fed, and had a continual supply of water. Compared to the controls, the wet mass of the gastrocnemius, sartorius, gracilus major, semimembranosus, peroneus, extensor cruris, tibialis posticus and tibialis anticus longus of aestivators remained unchanged indicating no muscle atrophy. The in-vitro performance characteristics of the gastrocnemius muscle were maintained and burst swimming speed was unaffected, requiring no recovery from the extended period of immobilisation associated with aestivation. This preservation of muscle size, contractile condition and locomotor performance through aestivation enables C. alboguttata to compress their life history into unpredictable windows of opportunity, whenever heavy rains occur.  相似文献   

4.
The mechanical properties of two extraocular muscles (superior oblique and superior rectus muscles) of the frog were studied and compared with those of a frog's skeletal muscle (iliofibularis muscle) which contains the same types of muscle fibres as the oculorotatory muscles. The extraocular muscles are very fast twitching muscles. They exhibit a smaller contraction time, a smaller half-relaxation time, a higher fusion frequency, and a lower twitch-tetanus ratio than the skeletal muscles. The maximum isometric tetanic tension produced per unit cross-sectional area is lower in the extraocular muscles than in skeletal muscles. However, the extraocular muscles show a higher fatigue resistance than the skeletal muscles. With respect to the dynamic properties there are some differences between the various oculorotatory muscles of the frog. The superior rectus muscle exhibits a faster time-course of the contraction, a higher fusion frequency, and a higher fatigability than the superior oblique muscle. An increase of the extracellular K+-concentration evokes sustained contractures not only in the extraocular muscles but also in the iliofibularis muscle; between these muscles there are no striking differences in the mechanical threshold of the whole muscle preparation. The mechanical threshold depends on the Ca++-concentration of the bathing solution and it is found in a range between 12.5 and 17.5 mM K+ in a normal Ringer solution containing 1.8 mM Ca++. The static-mechanical properties of the extraocular muscles of the frog and the dependence of the active developed tension on the muscle extension are very similar to those which are known to exist in the extraocular muscles of other vertebrates. In tetanic activated frog's oculorotatory muscles a linear relationship exists between length and tension. A variation of the stimulation frequency does not change the slope of this curve but causes parallel shifts of the curve. The peculiar properties of the extraocular muscles of the frog are discussed with respect to the muscle fibre types in these muscles and to the diameter of the muscle fibres.  相似文献   

5.
The pharmacological properties of the superior oblique and the superior rectus muscles of the frog's eye were investigated in comparison with those of a skeletal muscle (iliofibularis muscle) of the same animal. Acetylcholine causes sustained contractures of the extraocular muscles; this effect is increased by physostigmine and decreased or abolished by d-tubocurarine. Also the applications of succinylcholine, choline or caffeine are able to evoke contractures. There are no striking differences in pharmacological properties between extraocular and skeletal muscles of the frog. The time-course of the contractures and the sensitivity of the muscle preparations to the drugs which evoke contractures are identical in extraocular and iliofibularis muscles. In comparison with skeletal muscles there is no higher sensitivity of the extraocular muscles against curare-like drugs. The existence of adrenergic receptors could not be found neither in extraocular nor in skeletal muscles of the frog. It is concluded that in frogs no pharmacological differences exist between the muscle fibre types which compose the extraocular and the skeletal muscles.  相似文献   

6.
The reaction product of acetylcholinesterase (AChE) activity is known to be specifically localized at a neuromuscular junction and a muscle-tendon junction of the striated skeletal muscles. In addition to the two junctions, we recently found some linear precipitates due to AChE activity running transversely across a fibre of the semitendinosus, rectus abdominis, gastrocnemius, tibialis anterior and diaphragm muscles in mice. Under an electron microscope, the linear precipitates were seen at the extracellular side of the muscle fibre endings. Most of the endings contacted each other to form a junction, which has been called the 'myomyous junction (M-Mj)'. The patterns of the M-Mj were grouped into three types: (1) a junction in which all contacts were firm, without any connective tissue, and invaginated deeply; (2) the ones in which numerous collagen fibres were visible in the space between the two separate opposing muscle fibres; (3) an intermediate type between (1) and (2), i.e. a junction with partial contacts. The muscle fibre ending forming M-Mj was constructed of finger-like processes like that of a muscle-tendon junction. However, the processes of a M-Mj adhered so closely to each other that no collagen fibrils could penetrate into their folds.  相似文献   

7.
We investigated the capacity for pyruvate oxidation in skeletal muscle, diaphragm and heart after starvation and re-feeding. Starvation for 48 h decreased pyruvate dehydrogenase (PDH) activity in soleus (by 47%), extensor digitorum longus (64%), gastrocnemius (86%), diaphragm (87%), adductor longus (90%), tibialis anterior (92%) and heart (99%). Chow re-feeding increased PDH activity in all muscles to 43-78% of the fed value within 2 h. However, complete re-activation was not observed for at least 4-6 h, during which time hepatic glycogen was replenished. We discuss the importance of muscle PDH activity in relation to sparing carbohydrate for hepatic glycogen synthesis.  相似文献   

8.
Green-striped burrowing frogs (Cyclorana alboguttata) can depress their resting metabolism by more than 80% during aestivation. Previous studies have shown that this species is able to withstand long periods of immobilisation during aestivation while apparently maintaining whole muscle mass and contractile performance. The aim of this study was to determine the effect of prolonged aestivation on the levels of metabolic enzymes (CCO, LDH and CS) in functionally distinct skeletal muscles (cruralis, gastrocnemius, sartorius, iliofibularis and rectus abdominus) and liver of C. alboguttata. CS activity was significantly reduced in all tissues except for the cruralis, gastrocnemius and the liver. LDH activity was significantly reduced in the sartorius and rectus abdominus, but remained at control (active) levels in the other tissues. CCO activity was significantly reduced in the gastrocnemius and rectus abdominus, and unchanged in the remaining tissues. Muscle protein was significantly reduced in the sartorius and iliofibularis during aestivation, and unchanged in the remaining muscles. The results suggest that the energy pathways involved in the production and consumption of ATP are remodelled during prolonged aestivation but selective. Remodelling and subsequent down-regulation of metabolic activity seem to target the smaller non-jumping muscles, while the jumping muscles retain enzyme activities at control levels during aestivation. These results suggest a mechanism by which aestivating C. alboguttata are able to maintain metabolic depression while ensuring that the functional capacity of critical muscles is not compromised upon emergence from aestivation.  相似文献   

9.
In both longitudinal and cross sections of the M. iliofibularis of Rana esculenta three types of muscle fibres are identified by means of light and electron microscopy. These fibretypes called A-, B- and C-fibres are according to the fibres of m. rectus abdominis of the frog. They can be compared with the fibres of the m. rectus abdominis of rat and mouse. But there is another distribution of the fibretypes A, B and C in the m. iliofibularis and in the m. rectus abdominis. The m. iliofibularis is divided into two parts called "Tonusbündel" and "nichttonischer Teil" by means of their reaction to acetylcholine. The surface of the "Tonusbündel" consists of A-, B- and C-fibres while its inside is onlyformed by A- and B-fibres. They continue the "Tonusbündel" in the "nichttonischer Teil". This part chiefly consists of A-fibres. In cross sections their myofibrils are larger in their extent than the A-fibres known before. Therefore the A-fibretype has to be distinguished into two A-fibres: A1 and A2. The new one is called A2-fibre. A1-fibre is described in the "Tonusbündel" and in further investigations. The difference between the two fibres can be understood as a greater manifestation of power of the A1-fibre. The surface of the "nichttonischer Teil" of the m. iliofibularis consists of A2-fibres which easily could be found opposite the "Tonusbündel". At this point in contrary to the "Tonusbündel" could be found a defined morphological substrate for physiological investigations. The different reactions of "Tonusbündel" and "nichttonischer Teil" to acetylcholine could only be explained by the sum of reactions of all fibretypes in each bundle in correspondence with the reaction of the fibres in the neighbour bundle. But their different behaviour by summer- and winterfrogs is unknown. Therefore it is to discuss whether it is allowed to refer generally the results to "muscle" or "musclefibre" got from frogs living in cooled rooms. It is known in literature that not all results of physiological investigations can be interpreted with the two fibre- theorie ("twitch" and "slow") of muscle. Those not interpretable physiological results could be associated to the B-fibre can not be explained by morphological methods but must be proofed by physiological investigations. In tables are summerised morphological criteria of the three types and it is tried to associate the physiological qualities known from literature. Besides there is summerised the usual nomenclature with the first citations.  相似文献   

10.
The effect of increasing the osmotic strength of the extracellular solution on the fifament lattice of living frog sartorius and semitendinosus muscle has been studied using low-angle x-ray diffraction to measure the lattice spacing. As the extracellular osmotic strength is increased, the filament lattice shrinks like an osmometer until a minimal spacing between the thick filaments is reached. This minimal spacing varies from 20 to 31 nm, depending on the sarcomere length. Further increase in the osmotic strength produces little further shrinkage. The osmotic shrinkage curve indicates, for both muscles, an osmotically-inactive volume of approximately 30% of the volume in normal Ringer's solution. Shrinkage appears to be independent of temperature and the type of particle used to increase the osmotic strength (glucose, sucrose, small ions). The rate at which osmotic equilibruim is reached depends on muscle size, being slower for greater muscle diameters. Equilibrium spacings are approached exponentially with time constants ranging from 20 to 60 min. Independent of osmotic equilibrium, the lattice tends to shrink slowly by approximately 3% over the first few hours after dissection, probably because of a leakage of K+ ions from inside the muscle cells. This can be partly prevented by using an extracellular solution which contains a higher concentration of K+ ions or which is hypoosmotic. The volume of the muscle filament lattice (1.155d10(2) . S) is constant over a very wide range of sarcomere lengths, and is equal to approximately 3.6 x 10(6) nm3 for a range of amphibian muscle types.  相似文献   

11.
This report describes a comparative X-ray diffraction study of the supramolecular structure of frog sartorius and semitendinosus muscles. For sarcomere lengths of 2.7 microns and below the X-ray diffraction diagrams of each muscle type are very similar; the only differences being that the diffraction diagram for semitendinosus muscles exhibit the presence of a broad diffraction band or a cluster of diffraction orders at a spacing of ca. 230.0 nm and, also, they lack a periodicity of ca. 102.0 nm. For sarcomere lengths greater than 2.7 microns disruption of the sarcomere from sartorius muscle occurs as seen by the loss of sampling in the diffraction diagram. The semitendinosus muscle can be stretched to much longer lengths (in excess of 3.0 microns) before a loss of sampling is detected. The data also shows that in the case of the semitendinosus muscle for long sarcomere lengths transverse bands of mass are able to move without retaining a defined distance to either the Z or the M lines. This is not observed in the case of the sartorius muscle. Thus, at resolutions between ca. 3.6 microns and 7.50 nm significant ultrastructural differences between these two muscles are apparent. The data suggest that the ability of these mass bands to move may be responsible for the differences in the development of passive tension exhibited by these two muscles.  相似文献   

12.
Stimulation of the Na+ pump by hypotonic solutions in skeletal muscle   总被引:1,自引:0,他引:1  
The fractional loss of 22 Na+ from frog sartorius muscle is increased when the tonicity of the external solution is reduced. The effect, which is larger the lower the osmolarity, exhibits the following characteristics: (1) quick onset and reversibility, (2) is not reduced in the absence of external Na+, (3) is completely abolished by strophanthidin (3. 10-5 M), (4) is neither the result of membrane depolarization nor K+ accumulation in the extracellular space.  相似文献   

13.
Calcium equilibrium in muscle   总被引:1,自引:0,他引:1       下载免费PDF全文
1. A study of the calcium equilibrium in isolated frog muscle has been attempted. 2. When sartorius muscles were immersed in Ca(45) Ringer's solution, the surface phase took up the Ca(45) in about 1 minute; the extracellular water space and connective tissue in about 30 minutes; and the intracellular space in about 300 minutes. 3. The percentages of total calcium in the whole muscle immersed in Ringer's solution was as follows: 10 per cent in the surface phase; 12 per cent in the extracellular water space; 17 per cent in the dry connective tissue; 24 per cent in the intracellular space; and 37 per cent as non-exchangeable calcium. 4. The exchange constants of isolated frog sartorius muscle to calcium has been determined. The flux of intracellular calcium in the steady state was approximately 0.8 mM/(liter hr). 5. It appears that there is a calcium pump pushing calcium out of the cell against an electrochemical gradient of about 4 cal./mM of calcium. However, since the flux is low, the maximum energy required per hour to pump calcium out of the cell against this high gradient is only about 2 cal./kg. muscle or about 1 per cent of the resting energy.  相似文献   

14.
The distribution of glycogen, lipids and succinic dehydrogenase (SDH) in twitch and tonus fibers of several amphibians and birds is described, and the correlation of histochemical properties with fiber structure and function is discussed. Twitch and tonus fibers were identified histologically by the presence of Fibrillenstruktur and Felderstruktur respectively. The rectus abdominis, sartorius and semitendinosus were studied in Rana pipiens, Xenopus laevis and Necturus maculosus; the pectoralis major, pectoralis minor, anterior latissimus dorsi and posterior latissimus dorsi were investigated in Gallus gallus and Passer domesticus. Periodic acid-Schiff was used to stain for glycogen, Sudan Black B for lipids and Nitro BT for localization of SDH activity. In amphibian muscles, fibers with Fibrillenstruktur and Felderstruktur constitute the rectus abdominis. Except in one case, only Fibrillenstruktur fibers were seen in the sartorius and semitendinosus. In the avian muscles, fibers with Fibrillenstruktur comprise the pectoralis major, pectoralis minor and posterior latissimus dorsi, while fibers with Felderstruktur constitute the anterior latissimus dorsi. These types of muscle fibers showed no consistent pattern in the distribution of glycogen, lipids and SDH. The evidence precludes the use of such data alone for distinguishing twitch (Fibrillenstruktur) and tonus (Felderstruktur) fibers.  相似文献   

15.
In both longitudinal and cross sections of rectus abdominis muscle of Rana esculenta three types of muscle fibres are identified by means of light and electron microscopy. A comparison is made between these fibre types in homologous muscles of frog and mammals (rat and mouse). In longitudinal sections of mammalian and frog muscle the Z-line can be used for discrimination of the fibre types A, B and C because that line is of different thickness in each type. The proportions of the thickness in frog and mammalian muscles are relatively the same, but the absolute values are different. In cross sections there are no differences between frog and mammalian muscle fibres concerning the typical form of myofibrils in type A- and B-fibres, whereas in type C-fibres the arrangement of the filaments in the Z- and H-layer is different in the members of both animal classes. The amount of mitochondria and lipid droplets is different as well. In the species examined the distribution of A-, B- and C-fibres changes within the whole muscle. In frog, this pattern depends on the level in which the muscle has been sectioned. This is not true for mammalian muscle. On the other hand both ends of the rectus abdominis muscle in frog, rat and mouse show an accumulation of B- and C-type fibres.  相似文献   

16.
The intracellular pH of frog sartorius muscles exposed to an extracellular pH 8.0 (25 mM HCO3-, 1% CO2) was 6.9-7.1. Following a fatiguing stimulation period (one tetanic contraction per second for 3 min), the intracellular pH was 6.5-6.7. When similar experiments were repeated with frog sartorius muscles exposed to pH 6.4 (2mM HCO3-, 1% CO2), the intracellular pH was 6.8-6.9 at rest and 6.3-6.4 following fatigue. So, in both experiments the intracellular pH decreased by 0.4-0.5 pH unit during fatigue. When the CO2 concentration of the bathing solution was increased from 1 to 30%, the intracellular pH of resting muscles decreased from 7.0 to 6.2-6.3. Although the effect of CO2 on the intracellular pH was greater than the fatigue effect, the decrease in tetanic force with CO2 was less than 40%, while during fatigue the tetanic force decreased by at least 70%. Therefore in frog sartorius muscle the decrease in tetanic force during fatigue exceeds the decrease that is expected from just a change in intracellular pH.  相似文献   

17.
After investigations performed concerning the hemomicrocirculatory bed of the m. gracilis, m. rectus femoris, m. adductor longus and m. semitendinosus in 100 dogs transplanted on the perineum in order to form the rectal closing apparatus, according the technique elaborated, it has been stated that reaction of the blood bed of the muscle flaps in all experimental series is identical. During the restorative process of the disturbed hemocirculation in the muscle flap and in the intestinal closing apparatus built, certain phasesness in development of adaptive reactions is observed, that corresponds to the known syndrome "economization" microcirculation.  相似文献   

18.
Sinusoidal analysis of the mechanochemical properties of skinned muscle fibers under conditions of maximal activation was applied to fibers from several rabbit skeletal muscles (psoas, tibialis anterior, extensor digitorum longus, diaphragm, soleus, semitendinosus). This investigation distinguished between two general classes of fibers, which on the basis of their myosin light chain complements could be classified as fast and slow. In fast fibers (e.g., psoas) we identified the presence of at least three exponential processes (A), (B), (C) of comparable magnitudes. In slow fibers (e.g., soleus) we identified the presence of at least four exponential processes (A)-(D) of very different magnitudes; magnitudes of processes (A) and (B) are very small compared with those of (C) and (D). The apparent rate constants are 8-29-fold slower in slow fibers. Because our sinusoidal characterization takes less than or equal to 22 s and does not involve chemical denaturation or other means of disruption of the myofilament lattice, it allows the different physiological classes of fibers to be characterized and then studied further by other techniques. The perfect correlation between physiological and molecular properties as assayed by gel electrophoresis after sinusoidal analysis demonstrates this and justifies its use in distinguishing between fiber types.  相似文献   

19.
The properties of Ca-transporting system in sarcoplasmic reticulum membranes in fast and slow frog muscles as well as some properties of sarcolemma Na, K-ATPase of the same object were investigated. The rate of Ca2+ uptake, Ca-ATPase activity and Ca/ATP ratio for the reticulum of fast muscle demonstrated higher values than those for the reticulum of slow muscle. The rate of Ca2+ accumulation by the fragments of the rectus reticulum and Ca/ATP ratio were found to decrease under the influence of acetylcholine (0.05-5 mM). The transport system of the sartorius reticulum was found to be less sensitive to acetylcholine. The peak activity of Na, K-ATPase in femoral muscles of the frog occurred at 80 mM NaCl and 60 mM KCl, whereas in the rectus abdominal muscle it equalled 100 mM NaCl and 40 mM KCl. Thus, Na, K-ATPase activity in the slow muscle was predominantly higher than that in the mixed (femoral) muscles. If the sarcolemma preparations of the muscles of both types the inhibitory effect of acetylcholine on Na; K-ATPase was registered. The enzyme of slow muscles exhibited higher sensibility to acetylcholine.  相似文献   

20.
Intracellular pH (pHi), measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 +/- 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 +/- 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 +/- 0.01 delta pHi/min (n = 5) in 3 mM HEPES and was 0.18 +/- 0.06 delta pHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+-H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号