首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of isopropanol (iPrOH) on the structural dynamics of Thermomyces lanuginosa lipase (TLL) was studied by steady-state, time-resolved, and stopped-flow fluorescence spectroscopy, monitoring the intrinsic emission of Trp residues. The fluorescence of the four Trps of the wild-type enzyme report on the global changes of the whole lipase molecule. To monitor the conformational changes in the so-called "lid," an alpha-helical surface loop, the single Trp mutant W89m (W117F, W221H, W260H) was employed. Circular dichroism (CD) spectra revealed that iPrOH does not cause major alterations in the secondary structures of the wild-type TLL and W89m. With increasing [iPrOH], judged by the ratio of emission intensities at 350 nm and 330 nm, the average microenvironment of the Trps in the wild-type TLL became more hydrophobic, whereas Trp89 of W89m moved into a more hydrophilic microenvironment. Time-resolved fluorescence measurements revealed no major changes to be induced by iPrOH neither in the shorter fluorescence lifetime component (tau(1) = 0.5--1.2 ns) for the wild-type TLL nor in the longer fluorescence lifetime component (tau(2) = 4.8--6.0 ns) in the wild-type TLL and the W89m mutant. Instead, for W89m on increasing iPrOH from 25% to 50% the value for tau(1) increased significantly, from 0.43 to 1.5 ns. The shorter correlation time phi(1) of W89m had a minimum of 0.08 ns in 25% iPrOH. Judged from the residual anisotropy r(infinity) the amplitude of the local motion of Trp89 increased upon increasing [iPrOH] 10%. Stopped-flow fluorescence spectroscopy measurements suggested the lid to open within approximately 2 ms upon transfer of W89m into 25% iPrOH. Steady-state anisotropies and longer correlation times revealed increasing concentrations of iPrOH to result also in the formation of dimers as well as possibly also higher oligomers by TLL.  相似文献   

2.
Thermal stability of wild type Humicola lanuginosa lipase (wt HLL) and its two mutants, W89L and the single Trp mutant W89m (W117F, W221H, and W260H), were compared. Differential scanning calorimetry revealed unfolding of HLL at T(d)=74.4 degrees C whereas for W89L and W89m this endotherm was decreased to 68.6 and 62 degrees C, respectively, demonstrating significant contribution of the above Trp residues to the structural stability of HLL. Fluorescence emission spectra revealed the average microenvironment of Trps of wt HLL and W89L to become more hydrophilic at elevated temperatures whereas the opposite was true for W89m. These changes in steady-state emission were sharp, with midpoints (T(m)) at approx. 70.5, 61.0, and 65.5 degrees C for wt HLL, W89L, and W89m, respectively. Both steady-state and time resolved fluorescence spectroscopy further indicated that upon increasing temperature, the local movements of tryptophan(s) in these lipases were first attenuated. However, faster mobilities became evident when the unfolding temperatures (T(m)) were exceeded, and the lipases became less compact as indicated by the increased hydrodynamic radii. Even at high temperatures (up to 85 degrees C) a significant extent of tertiary and secondary structure was revealed by circular dichroism. Activity measurements are in agreement with increased amplitudes of conformational fluctuations of HLL with temperature. Our results also indicate that the thermal unfolding of these lipases is not a two-state process but involves intermediate states. Interestingly, a heating and cooling cycle enhanced the activity of the lipases, suggesting the protein to be trapped in an intermediate, higher energy state. The present data show that the mutations, especially W89L in the lid, contribute significantly to the stability, structure and activity of HLL.  相似文献   

3.
Effects of guanidine hydrochloride (GdnHCl) on the structure and dynamics of wild-type Humicola lanuginosa lipase (HLL) and its two mutants were studied. The latter were S146A (with the active site Ser replaced by Ala) and the single Trp mutant W89m, with substitutions W117F, W221H, and W260H. Steady-state, stopped-flow, and time-resolved laser-induced fluorescence spectroscopy were carried out as a function of [GdnHCl]. The maximum emission wavelength and fluorescence lifetimes revealed the microenvironment of the tryptophan(s) in these lipases to become more polar upon increasing [GdnHCl]. However, significant extent of tertiary structure in GdnHCl is suggested by the observation that both wild-type HLL and W89m remain catalytically active at rather high GdnHCl concentrations of >6 and 4.0 M, respectively. Changes in steady-state emission anisotropy, as well as variation in rotational correlation times and residual anisotropy values, demonstrate that upon increasing [GdnHCl] the structure of the lipases became more loose, with increasing amplitude of structural fluctuations. Finally, intermediate states in the course of exposure of the proteins to GdnHCl were revealed by stopped-flow fluorescence measurements.  相似文献   

4.
The binding of Thermomyces lanuginosa lipase and its mutants [TLL(S146A), TLL(W89L), TLL(W117F, W221H, W260H)] to the mixed micelles of cis-parinaric acid/sodium taurodeoxycholate at pH 5.0 led to the quenching of the intrinsic tryptophan fluorescence emission (300-380 nm) and to a simultaneous increase in the cis-parinaric acid fluorescence emission (380-500 nm). These findings were used to characterize the Thermomyces lanuginosa lipase/cis-parinaric acid interactions occurring in the presence of sodium taurodeoxycholate.The fluorescence resonance energy transfer and Stern-Volmer quenching constant values obtained were correlated with the accessibility of the tryptophan residues to the cis-parinaric acid and with the lid opening ability of Thermomyces lanuginosa lipase (and its mutants). TLL(S146A) was found to have the highest fluorescence resonance energy transfer. In addition, a TLL(S146A)/oleic acid complex was crystallised and its three-dimensional structure was solved. Surprisingly, two possible binding modes (sn-1 and antisn1) were found to exist between oleic acid and the catalytic cleft of the open conformation of TLL(S146A). Both binding modes involved an interaction with tryptophan 89 of the lipase lid, in agreement with fluorescence resonance energy transfer experiments.As a consequence, we concluded that TLL(S146A) mutant is not an appropriate substitute for the wild-type Thermomyces lanuginosa lipase for mimicking the interaction between the wild-type enzyme and lipids.  相似文献   

5.
We have used continuum electrostatic methods to investigate the role of electrostatic interactions in the structure, function, and pH-dependent stability of the fungal Rhizomucor miehei lipase (RmL) family. We identify a functionally important electrostatic network which includes residues S144, D203, H257, Y260, H143, Y28, R80, and D91 (residue numbering is from RmL). This network consists of residues belonging to the catalytic triad (S144, D203, H257), residues located in proximity to the active site (Y260), residues stabilizing the geometry of the active site (Y28, H143), and residues located in the lid (D91) or close to the first hinge (R80). The lid and the first hinge are associated with the interfacial activation of lipases, where an alpha-helical lid opens up by rotating around two hinge regions. All network residues are well conserved in a set of 12 lipase homologues, and 6 of the network residues are located in sequence motifs. We observe that the effects of modeled mutations R86L, D91N, and H257F on the pH-dependent electrostatic free energies differ significantly in the closed and open conformations of RmL. Mutation R86L is especially interesting since it stabilizes the closed conformation but destabilizes the open one. Site-site electrostatic interaction energies reveal that interactions between R86 and D61, D113, and E117 stabilize the open conformation.  相似文献   

6.
Detergent (pentaoxyethylene octyl ether, C(8)E(5))-induced conformational changes of Humicola lanuginosa lipase (HLL) were investigated by stationary and time-resolved fluorescence intensity and anisotropy measurements. Activation of HLL is characterized by opening of a surface loop (the "lid") residing directly over the enzyme active site. The interaction of HLL with C(8)E(5) increases fluorescence intensities, prolongs fluorescence lifetimes, and decreases the values of steady-state anisotropy, residual anisotropy, and the short rotational correlation time. Based on these data, we propose the following model. Already below critical micellar concentration (CMC) the detergent can intercalate into the active site accommodating cleft, while the lid remains closed. Occupation of the cleft by C(8)E(5) also blocks the entry of the monomeric substrate, and inhibition of catalytic activity at [C(8)E(5)] less than or equal to CMC is evident. At a threshold concentration close to CMC the cooperativity of the hydrophobicity-driven binding of C(8)E(5) to the lipase increases because of an increase in the number of C(8)E(5) molecules present in the premicellar nucleates on the hydrophobic surface of HLL. These aggregates contacting the lipase should have long enough residence times to allow the lid to open completely and expose the hydrophobic cleft. Concomitantly, the cleft becomes filled with C(8)E(5) and the "open" conformation of HLL becomes stable.  相似文献   

7.
Small unilamelar vesicles of anionic phospholipids (SUV), such as 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG), provide an interface where Thermomyces lanuginosa triglyceride lipase (TlL) binds and adopts a catalytically active conformation for the hydrolysis of substrate partitioned in the interface, such as tributyrin or p-nitrophenylbutyrate, with an increase in catalytic rate of more than 100-fold for the same concentration of substrate [Berg et al. (1998) Biochemistry 37, 6615-6627.]. This interfacial activation is not seen with large unilamelar vesicles (LUV) of the same composition, or with vesicles of zwitterionic phospholipids such as 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine (POPC), independently of the vesicle size. Tryptophan fluorescence experiments show that lipase binds to all those types of vesicles with similar affinity, but it adopts different forms that can be correlated with the enzyme catalytic activity. The spectral change on binding to anionic SUV corresponds to the catalytically active, or "open" form of the enzyme, and it is not modified in the presence of substrate partitioned in the vesicles, as demonstrated with inactive mutants. This indicates that the displacement of the lid characteristic of lipase interfacial activation is induced by the anionic phospholipid interface without blocking the accessibility of the active site to the substrate. Experiments with a mutant containing only Trp89 in the lid show that most of the spectral changes on binding to POPG-SUVs take place in the lid region that covers the active site; an increase in Trp anisotropy indicates that the lid becomes less flexible in the active form, and quenching experiments show that it is significantly buried from the aqueous phase. On the other hand, results with a mutant where Trp89 is changed to Leu show that the environment of the structural tryptophans in positions 117, 221, and 260 is somehow altered on binding, although their mobility and solvent accessibility remains the same as in the inactive form in solution. The form of TlL bound to POPC-SUV or -LUV vesicles as well as to LUV vesicles of POPG has the same spectral signatures and corresponds to an inactive or "closed" form of the enzyme. In these interfaces, the lid is highly flexible, and Trp89 remains accessible to solvent. Resonance energy transfer experiments show that the orientation of TlL in the interface is different in the active and inactive forms. A model of interaction consistent with these data and the available X-ray structures is proposed. This is a unique system where the composition and physical properties of the lipid interface control the enzyme activity.  相似文献   

8.
Shan L  Tong Y  Xie T  Wang M  Wang J 《Biochemistry》2007,46(41):11504-11513
The role of cis-trans isomerizations of peptidyl-proline bonds in the enzyme activity of staphylococcal nuclease (SNase) was examined by mutation of proline residues. The proline-free SNase ([Pro-]SNase), namely, P11A/P31A/P42A/P47T/P56A/P117G-mutant SNase, was adopted for elucidating the correlation between the nuclease activity and the backbone conformational and dynamic states of SNase. The 3D solution structure of [Pro-]SNase has been determined by heteronuclear NMR experiments. Comparing the structure of [Pro-]SNase with the structure of SNase revealed the conformational differences between the two proteins. In the structure of [Pro-]SNase, conformational rearrangements were observed for the loop of residues Ala112-His121 containing a trans Lys116-Gly117 peptide bond and for the C-terminal alpha-helical loop of residues Leu137-Glu142. Mutation of proline at position 117 also caused the conformational rearrangement of the p-loop (Asp77-Leu89), which is remote from the Ala112-His121 loop. The Ala112-His121 loop and p-loop are placed closer to each other in [Pro-]SNase than in SNase. The backbone dynamic features of the omega-loop (Pro42-Pro56) of SNase are different from those of [Pro-]SNase. The backbone of the omega-loop exhibits restricted flexibility with slow conformational exchange motions in SNase, but is highly flexible in [Pro-]SNase. The analysis indicates that the restrained backbone conformation of the Ala112-His121 loop and restricted flexibility of the omega-loop are two dominant factors determining the enzyme activity of SNase. Of the two factors, the former is correlated with the strained cis Lys116-Pro117 peptide bond and the latter is correlated with the cis-trans isomerizations of the His46-Pro47 peptide bond.  相似文献   

9.
Imhof N  Kuhn A  Gerken U 《Biochemistry》2011,50(15):3229-3239
The binding of Pf3 coat protein to the membrane insertase YidC from Escherichia coli induces a conformational change in the tertiary structure of the insertase, resulting in a quenching of the intrinsic tryptophan (Trp) fluorescence. Tryptophan mutants of YidC were generated to examine such conformational movements in detail with time-resolved and steady-state fluorescence spectroscopy. Ten of the 11 Trp residues within YidC were substituted to phenylalanines generating single Trp mutants either at position 354, 454, or 508. In addition, a double mutant with Trp residues at 332 and 334 was studied. Purified YidC mutants were reconstituted into DOPC/DOPG vesicles and titrated with a Trp-free mutant of Pf3 coat, enabling a detailed conformational study of the periplasmic P1, P2, and P3 domains of YidC before and after binding of substrate. Time-resolved fluorescence anisotropy revealed that the mobility of the residues W332/W334 and W508 was considerably increased after binding of Pf3 coat to the insertase. Furthermore, analysis of the fluorescence emission spectra and the decay times showed that all Trp residues are embedded in an equivalent environment that is a membrane/water interface.  相似文献   

10.
11.
12.
In an effort to explore the effects of local flexibility on the cold adaptation of enzymes, we designed point mutations aiming to modify side-chain flexibility at the active site of the psychrophilic alkaline phosphatase from the Antarctic strain TAB5. The mutagenesis targets were residues Trp260 and Ala219 of the catalytic site and His135 of the Mg2+ binding site. The replacement of Trp260 by Lys in mutant W260K, resulted in an enzyme less active than the wild-type in the temperature range 5-25 degrees C. The additional replacement of Ala219 by Asn in the double mutant W260K/A219N, resulted in a drastic increase in the energy of activation, which was reflected in a considerably decreased activity at temperatures of 5-15 degrees C and a significantly increased activity at 20-25 degrees C. Further substitution of His135 by Asp in the triple mutant W260K/A219N/H135D restored a low energy of activation. In addition, the His135-->Asp replacement in mutants H135D and W260K/A219N/H135D resulted in considerable stabilization. These results suggest that the psychrophilic character of mutants can be established or masked by very slight variations of the wild-type sequence, which may affect active site flexibility through changes in various conformational constraints.  相似文献   

13.
We analysed the conformational states of free, tet operator-bound and anhydrotetracycline-bound Tet repressor employing a Trp-scanning approach. The two wild-type Trp residues in Tet repressor were replaced by Tyr or Phe and single Trp residues were introduced at each of the positions 162-173, representing part of an unstructured loop and the N-terminal six residues of alpha-helix 9. All mutants retained in vivo inducibility, but anhydrotetracycline-binding constants were decreased up to 7.5-fold when Trp was in positions 169, 170 and 173. Helical positions (168-173) differed from those in the loop (162-167) in terms of their fluorescence emission maxima, quenching rate constants with acrylamide and anisotropies in the free and tet operator-complexed proteins. Trp fluorescence emission decreased drastically upon atc binding, mainly due to energy transfer. For all proteins, either free, tet operator bound or anhydrtetracycline-bound, mean fluorescence lifetimes were determined to derive quenching rate constants. Solvent-accessible surfaces of the respective Trp side chains were calculated and compared with the quenching rate constants in the anhydrotetracycline-bound complexes. The results support a model, in which residues in the loop become more exposed, whereas residues in alpha-helix 9 become more buried upon the induction of TetR by anhydrotetracycline.  相似文献   

14.
The X-ray crystal structure of a Rhodobacter sphaeroides reaction center with the mutation Ala M260 to Trp (AM260W) has been determined. Diffraction data were collected that were 97.6% complete between 30.0 and 2.1 A resolution. The electron density maps confirm the conclusions of a previous spectroscopic study, that the Q(A) ubiquinone is absent from the AM260W reaction center (Ridge, J. P., van Brederode, M. E., Goodwin, M. G., van Grondelle, R., and Jones, M. R. (1999) Photosynthesis Res. 59, 9-26). Exclusion of the Q(A) ubiquinone caused by the AM260W mutation is accompanied by a change in the packing of amino acids in the vicinity of the Q(A) site that form part of a loop that connects the DE and E helices of the M subunit. This repacking minimizes the volume of the cavity that results from the exclusion of the Q(A) ubiquinone, and further space is taken up by a feature in the electron density maps that has been modeled as a chloride ion. An unexpected finding is that the occupancy of the Q(B) site by ubiquinone appears to be high in the AM260W crystals, and as a result the position of the Q(B) ubiquinone is well-defined. The high quality of the electron density maps also reveals more precise information on the detailed conformation of the reaction center carotenoid, and we discuss the possibility of a bonding interaction between the methoxy group of the carotenoid and residue Trp M75. The conformation of the 2-acetyl carbonyl group in each of the reaction center bacteriochlorins is also discussed.  相似文献   

15.
By analyzing, after expression in yeast and purification, the intrinsic fluorescence properties of point mutants of rabbit Ca(2+)-ATPase (SERCA1a) with alterations to amino acid residues in Ca(2+)-binding site I (E(771)), site II (E(309)), in both sites (D(800)), or in the nucleotide-binding domain (W(552)), we were able to follow the conformational changes associated with various steps in the ATPase catalytic cycle. Whereas Ca(2+) binding to purified wild-type (WT) ATPase in the absence of ATP leads to the rise in Trp fluorescence expected for the so-called E2 --> E1Ca(2) transition, the Ca(2+)-induced fluorescence rise is dramatically reduced for the E(309)Q mutant. As this purified E(309)Q mutant retains the ability to bind Ca(2+) at site I (but not at site II), we tentatively conclude that the protein reorganization induced by Ca(2+) binding at site II makes the major contribution to the overall Trp fluorescence changes observed upon Ca(2+) binding to both sites. Judging from the fluorescence response of W(552)F, similar to that of WT, these changes appear to be primarily due to membranous tryptophans, not to W(552). The same holds for the fluorescence rise observed upon phosphorylation from P(i) (the so-called E2 --> E2P transition). As for WT ATPase, Mg(2+) binding in the absence of Ca(2+) affects the fluorescence of the E(309)Q mutant, suggesting that this Mg(2+)-dependent fluorescence rise does not reflect binding of Mg(2+) to Ca(2+) sites; instead, Mg(2+) probably binds close to the catalytic site, or perhaps near transmembrane span M3, at a location recently revealed by Fe(2+)-catalyzed oxidative cleavage. Mutation of W(552) hardly affects ATP-induced fluorescence changes in the absence of Ca(2+), which are therefore mostly due to membranous Trp residues, demonstrating long-range communication between the nucleotide-binding domain and the membranous domain.  相似文献   

16.
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.  相似文献   

17.
The importance of aromatic and charged residues at the surface of the active site of a family 11 xylanase from Aspergillus niger was evaluated using site-directed mutagenesis. Ten mutant proteins were heterologously produced in Pichia pastoris, and their biochemical properties and kinetic parameters were determined. The specific activity of the Y6A, Y10A, Y89A, Y164A, and W172A mutant enzymes was drastically reduced. The low specific activities of Y6A and Y89A were entirely accounted for by a change in k(cat) and K(m), respectively, whereas the lower values of Y10A, Y164A, and W172A were due to a combination of increased K(m) and decreased k(cat). Tyr(6), Tyr(10), Tyr(89), Tyr(164), and Trp(172) are proposed as substrate-binding residues, a finding consistent with structural sequence alignments of family 11 xylanases and with the three-dimensional structure of the A. niger xylanase in complex with the modeled xylobiose. All other variants, D113A, D113N, N117A, E118A, and E118Q, retained full wild-type activity. Only N117A lost its sensitivity to xylanase inhibitor protein I (XIP-I), a protein inhibitor isolated from wheat, and this mutation did not affect the fold of the xylanase as revealed by circular dichroism. The N117A variant showed kinetics, pH stability, hydrolysis products pattern, substrate specificity, and structural properties identical to that of the wild-type xylanase. The loss of inhibition, as measured in activity assays, was due to abolition of the interaction between XIP-I and the mutant enzyme, as demonstrated by surface plasmon resonance and electrophoretic titration. A close inspection of the three-dimensional structure of A. niger xylanase suggests that the binding site of XIP-I is located at the conserved "thumb" hairpin loop of family 11 xylanases.  相似文献   

18.
Raja MM  Kinne RK 《Biochemistry》2005,44(25):9123-9129
We have previously shown that C-terminal loop 13 of SGLT1 acts as a major binding domain for the aglucon residues of d-glucose transport inhibitors, phlorizin (Raja, M. M., Tyagi, N. K., and Kinne, R. K. H. (2003) Phlorizin Recognition in a C-terminal Fragment of SGLT1 Studied by Tryptophan Scanning and Affinity Labeling, J. Biol. Chem. 278, 49154-49163) and alkyl glucosides (Raja, M. M., Kipp, H., and Kinne, R. K. H. (2004) C-Terminus Loop 13 of Na(+) Glucose Cotransporter SGLT1 Contains a Binding Site for Alkyl Glucosides, Biochemistry 43, 10944-10951). Topology of this loop with regard to the membrane lipids is hitherto a point of debate. Here we report on in vitro incorporation studies using fluorescence of Trp mutants of loop 13 to determine the position of various parts of the loop with the lipid bilayer. Six single Trp mutants were prepared as described in previous studies (Raja et al., 2003) and subsequently incorporated into DOPC:DOPG (60:40% molar ratio) lipid vesicles. Upon addition of the phospholipids only one mutant, R601W, exhibited no change in the fluorescence intensities, position of maxima, or acrylamide accessibility. Mutants Q581W, E621W, and L630W exhibited the most pronounced blue shifts (3-6 nm) and protection against acrylamide, suggesting a position of these segments within the lipid bilayer. This assumption was confirmed by the result that the fluorescence of only these mutants was quenched by doxyl spin membrane embedded labels in the 5- or 12-positions of the acyl side chain of phospholipids. The other parts of the peptide appear to remain outside of the lipid vesicles. Trp-591 and Trp-611 showed, although to a different extent, increase in fluorescence, blue shift of maxima, and decrease in acrylamide accessibility but no interaction with the spin-labeled phospholipids. This suggests changes in the conformation of the peptide itself. These conformation changes are probably induced by the interaction of an adjacent lysine rich region of the peptide with the negatively charged DOPG, since in the absence of this lipid no incorporation of loop 13 into the bilayer is observed. Trypsin cleavage experiments of loop 13 in proteoliposomes yield a peptide containing amino acid residues 603 to 614, confirming that this part of the loop is accessible at the extravesicular face of the membranes. The studies show that at least in the in vitro system the part of loop 13 essential for the interaction with the transport inhibitors is located extracellularly, making a similar arrangement in the intact SGLT1 probable.  相似文献   

19.
Tropomyosin (TM) binds to and regulates the actin filament. We used circular dichroism and heteronuclear NMR to investigate the secondary structure and interactions of the C terminus of striated muscle alpha-TM, a major functional determinant, using a model peptide, TM9a(251-284). The (1)H(alpha) and (13)C(alpha) chemical shift displacements show that residues 252 to 277 are alpha-helical but residues 278 to 284 are nonhelical and mobile. The (1)H(N) and (13)C' displacements suggest that residues 257 to 269 form a coiled coil. Formation of an "overlap" binary complex with a 33-residue N-terminal chimeric peptide containing residues 1 to 14 of alpha-TM perturbs the (1)H(N) and (15)N resonances of residues 274 to 284. Addition of a fragment of troponin T, TnT(70-170), to the binary complex perturbs most of the (1)H(N)-(15)N cross-peaks. In addition, there are many new cross-peaks, showing that the binding is asymmetric. Q263, in a proposed troponin T binding site, shows two sets of side-chain (15)N-(1)H cross-peaks, indicating conformational flexibility. The conformational equilibrium of the side chain changes upon formation of the binary and ternary complexes. Replacing Q263 with leucine greatly increases the stability of TM9a(251-284) and reduces its ability to form the binary and ternary complexes, showing that conformational flexibility is crucial for the binding functions of the C terminus.  相似文献   

20.
Phospholipase A(2) (PLA(2)) enzymes become activated by binding to biological membranes and hydrolyze phospholipids to free fatty acids and lyso-phospholipids, the precursors of inflammatory mediators. To understand the functional significance of amino acid residues at key positions, we have studied the effects of the substitution of Val(3) (membrane binding surface) and Phe(5) (substrate binding pocket) of human group IIA PLA(2) by tryptophan on the structure and function of the enzyme. Despite the close proximity of the sites of mutations, the V3W mutation results in substantial enhancement of the enzyme activity, whereas the F5W mutant demonstrates significantly suppressed activity. A structural analysis of all three proteins free in buffer and bound to membranes indicates that large differences in activities result from distinct conformational changes in PLA(2)s upon membrane binding. Although PLA(2) and the V3W mutant demonstrate a decrease in helical content and an increase in helix flexibility, the F5W mutant experiences partial distortion of the alpha-helical structure presumably resulting from the tendency of Trp(5) to insert into the membrane. Furthermore, whereas the PLA(2) and the V3W mutant bind to the membrane at similar and apparently productive-mode orientation, the F5W mutant binds to membranes with a distinctly different orientation. It is suggested that both the stimulatory effect of the V3W mutation and the inhibitory effect of the F5W mutation result from the high affinity of Trp for the membrane-water interface. Although Trp(3) at the membrane binding face of PLA(2) facilitates the proper membrane binding of the enzyme, Trp(5) in the internal substrate binding site causes partial unwinding of the N-terminal helix in order to interact with the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号