首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z G Peng  R Wu 《Gene》1986,45(3):247-252
An improved rapid method for sequencing a target DNA is described. A new plasmid, pAA-PZ1, which contains the origin of replication from phage M13 and a portion of the Tn9 transposon was constructed. A long fragment of target DNA cloned into this vector is progressively shortened in vivo from one end by transposon-mediated deletions. The plasmids carrying different lengths of target DNA are then made into single-stranded DNA in the same host upon infection with an M13 phage and their sequence is determined using the dideoxynucleotide chain-termination method. This method bypasses the in vitro enzymatic manipulations for progressive deletions and requires no subcloning. Using this strategy, we sequenced 1.3 kb of rice DNA containing a histone 3 gene within three weeks.  相似文献   

2.
A Ahmed 《Gene》1984,28(1):37-43
Insertion of a HindIII-EcoRI fragment carrying part of the gal operon from lambda gal+ into pBR322 yields a plasmid (pAA3) which confers strong galactose sensitivity on E. coli strains deleted for the gal operon. Sensitivity to galactose is caused by the expression of kinase and transferase (but not epimerase) genes from a promoter located in the tet gene of pBR322. Insertion of a DNA fragment carrying Tn9 at the HindIII junction blocks gal expression and produces a galactose-resistant phenotype. Hence, galactose resistance can be used to select DNA fragments cloned at the HindIII site. The system was used efficiently for cloning lambda, yeast, and human DNA. The cloned fragments can be screened directly for the presence of promoters by testing for tetracycline resistance. Alternatively, these plasmids can be used as cosmids for cloning large fragments of DNA at a number of sites. Construction of several related vectors is described.  相似文献   

3.
Bacteriophage P22 which are incapable of making functional tail protein can be propagated by the addition of purified mature tail protein trimers to either liquid or solidified medium. This unique in vitro complementation condition has allowed us to isolate 74 absolute lethal tail protein mutants of P22 after hydroxylamine mutagenesis. These phage mutants have an absolute requirement for purified P22 tail protein to be present in a soft agar overlay in order to form plaques and do not grow on any nonsense suppressing strains of Salmonella typhimurium. In order to genetically map and physically locate these mutations we have constructed two complementary sets of fine structure deletion mapping strains using a collection of Tn1 insertions in gene 9, the structural gene for the tail protein. Fourteen bacteriophage P22 strains carrying unique Tn1 transposon insertions (Ap phage) in gene 9 have been crossed with Ap phage carrying Tn1 insertions in gene 20. Phage carrying deletions that arose from homologous recombination between the Tn1 elements were isolated as P22 lysogens. The deletion prophage were shown to be missing all genetic information bracketed by the parental Tn1 elements and thus form a set of deletions into gene 9 from the 5' end of the gene. From the frequency of production of these deletion phage the orientation of the Tn1 insertions in gene 9 could be deduced. The genetic end points of the deletions in gene 9 and thus the order of Tn1 insertions were determined by marker rescue experiments using the original Ap phage. The genetic end points of the deletions in gene 20 were determined in similar experiments using nonsense mutations in gene 20. To locate the physical end points of these deletions in gene 9, DNA containing the Tn1 element has been cloned from each of the original Ap phage into plasmids. The precise point of insertion of Tn1 into gene 9 was determined by restriction enzyme mapping and DNA sequencing of the relevant portions of each of these plasmids. In vitro deletion of different 3' gene 9 sequences in the plasmid clones was accomplished through the use of unique restriction endonuclease sites in Tn1. The resulting plasmids form a set of deletions extending into the 3' end of the gene which are complementary compared to the deletion lysogens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
F Heffron  B J McCarthy  H Ohtsubo  E Ohtsubo 《Cell》1979,18(4):1153-1163
The complete nucleotide sequence of the transposon Tn3 and of 20 mutations which affect its transposition are reported. The mutations, generated in vitro by random insertion of synthetic restriction sites, proved to contain small duplications or deletions immediately adjacent to the new restriction site. By determining the phenotype and DNA sequence of these mutations we were able to generate an overlapping phenotypic and nucleotide map. This 4957 bp transposon encodes three polypeptides which account for all but 350 bp of its total coding capacity. These proteins are the transposase, a high molecular weight polypeptide (1015 amino acids) encoded by the tnpA gene; the Tn3-specific repressor, a low molecular weight polypeptide (185 amino acids) encoded by the tnpR gene; and the 286 amino acid beta-lactamase. The 38 bp inverted repeats flanking Tn3 appear to be absolutely required in cis for Tn3 to transpose. Genetic data suggest that Tn3 contains a third site (Gill et al., 1978), designated IRS (internal resolution site), whose absence results in the insertion of two complete copies of Tn3 as direct repeats into the recipient DNA. We suggest that these direct repeats of complete copies of Tn3 are intermediates in transposition, and that the IRS site is required for recombination and subsequent segregation of the direct repeats to leave a single copy of Tn3 (Gill et al., 1978). A 23 nucleotide sequence within the amino terminus of the transposase which shares strong sequence homology with the inverted repeat may be the internal resolution site.  相似文献   

5.
H Ohtsubo  B Vassino  T Ryder  E Ohtsubo 《Gene》1982,20(2):245-254
This paper describes a simple method for the isolation of small plasmids of various sizes from pSMI, a derivative of the resistance plasmid R 100. The method is based on the observation that a repressor-negative mutant of the ampicillin-resistance (ampr) transposon Tn3, Tn3 No. 5, mediates cointegration of a plasmid carrying Tn 3 No. 5 (pMB8::Tn 3 No. 5) into virtually any site on pSMI. The resulting cointegrate plasmids contain the pSMI sequence which is joined with the ampr gene of the Tn 3 mutant. This cointegration is so frequent that large cointegrate plasmids can be readily detected in the total plasmid DNA prepared from cells carrying pSMI and pMB8::Tn3 No. 5. We were able to isolate small plasmids of various sizes by digesting the total plasmid DNAs with restriction endonucleases which cut both pSM 1 and Tn3 No. 5 sequences present in the cointegrates and subsequently ligating the restriction fragment containing both the ampr gene and the region necessary for replication of pSMI. Analysis of these plasmids, named pBV plasmids, with restriction endonucleases and by nucleotide sequencing allowed us to determine regions necessary or unnecessary for replication, thus defining a minimal replication region of pSMI. The present method is generally useful for the isolation of small derivatives from any large plasmid for the study of genes and sites adjacent to or within the minimal replication region of the plasmid.  相似文献   

6.
M Rella  A Mercenier  D Haas 《Gene》1985,33(3):293-303
For insertional mutagenesis of Pseudomonas aeruginosa, a derivative of the kanamycin-resistance (KmR) transposon Tn5 was constructed (Tn5-751) that carried the trimethoprim-resistance (TpR) determinant from plasmid R751 as an additional marker. Double selection for KmR and TpR avoided the isolation of spontaneous aminoglycoside-resistant mutants which occur at high frequencies in P. aeruginosa. As a delivery system for the recombinant transposon, plasmid pME305, a derivative of the broad-host-range plasma RP1, proved effective; pME305 is temperature-sensitive at 43 degrees C for maintenance in Escherichia coli and P. aeruginosa and deleted for IS21 and the KmR and primase genes. In matings with an E. coli donor carrying pME9(= pME305::Tn5-751), transposon insertion mutants of P. aeruginosa PAO were recovered at approx. 5 X 10(-7)/donor at 43 degrees C. Among Tn5-751 insertional mutants 0.9% were auxotrophs. A thr::Tn5-751 mutation near the recA-like locus rec-102 is useful for the construction of recombination-deficient strains. Several arc::Tn5-751 mutants could be isolated that were defective in anaerobic utilization of arginine as an energy source. From three of these mutants the arc gene region was cloned into an E. coli vector plasmid. Since Tn5-751 has a single EcoRI site between the TpR and KmR genes, EcoRI-generated fragments carrying either resistance determinant plus adjacent chromosomal DNA could be selected separately in E. coli. Thus, a restriction map of the arc region was constructed and verified by hybridization experiments. The arc genes were tightly clustered, confirming earlier genetic evidence.  相似文献   

7.
8.
We describe a novel type of transposon in the tetracycline resistance plasmid pYM103, a derivative of pSC101 carrying a single copy of an insertion element IS102. The new transposons we found were identified as DNA segments, approximately 6 kb (Tn1021) and 10 kb (Tn1022) in length, able to mediate the cointegration of pYM1O3 with plasmid Col E1. The resulting cointegrate contains either of these pYM1O3 segments duplicated in a direct orientation at the junctions of the parent plasmids. A direct duplication of a 9 bp sequence at the target site in Col E1 is found at the junctions for cointegration. Both transposons have IS1O2 at one end and also contain different lengths of the pYM103 DNA adjacent to IS102, including the tetracycline resistance gene. Each transposon contains terminal inverted repeats of a short nucleotide sequence. These results and the fact that IS102 can itself mediate plasmid cointegration, giving rise to a duplication of a 9 bp target sequence, indicate that IS102 is responsible for generation of Tn1021 and Tn1022. They are quite different from the common IS-associated transposons, which are always flanked by two copies of an IS element, and may be similar to transposons such as those of the Tn3 family and phage Mu.  相似文献   

9.
A Ahmed 《Gene》1985,39(2-3):305-310
A simple procedure has been developed for sequencing long fragments of DNA. The fragment (which can be several kb in length) is cloned in pAA3.7X, and subdivided into many overlapping segments by Tn9-promoted deletions. The deletions are isolated by positive selection for galactose resistance. A rapid plasmid preparation from several hundred galactose-resistant colonies is fractionated by agarose gel electrophoresis to pick a series of deletions terminating at approx. 200-bp intervals across the entire length of the fragment. Selected plasmids are purified by rapid alkaline extraction, and used directly for supercoil sequencing with a primer derived from IS1. Sequences of adjacent deletions contain overlaps which are used to connect individual sequences to give the complete sequence.  相似文献   

10.
Deletions in transposon Tn7 either abolished transposition or reduced transposition frequency. Except for a deletion in the right-hand terminus, these deletions could be complemented in trans. A 2.1-kilobase fragment of Tn7 encodes a diffusible gene product which stimulates transposition above the wild-type frequency. No cointegrate formation was detected.  相似文献   

11.
12.
H Pannekoek  J Hille  I Noordermeer 《Gene》1980,12(1-2):51-61
The structure and function of recombinant plasmid pNP5, which consists of vector pMB9 and a 2.5 kb EcoRI fragment harbouring the Escherichia coli uvrB gene, has been investigated. Insertional inactivation with the transposons Tn1 (Apr) or Tn5 (Kmr) has been used to determine the region on pNP5 DNA that is essential for UV resistance in uvrB deletion strains. This region spans approx. 1.8 kb and is separated by at least 280 bp from the pMB9 promoter to which it has been fused. Furthermore, a procedure is described to eliminate the polarity exerted by the transposon Tn5. A combination of in vitro digestion of pNP5::Tn5 DNA with restriction endonuclease XHoI, followed by ligation and subsequent in vivo propagation of the resulting plasmid DNA yields predominantly pNP5 molecules with a site-specific nonpolar mutation. The method allows an investigation of cloned complex genetic units, such as operons.  相似文献   

13.
14.
The transposon Tn9 generates a 9 bp repeated sequence during integration.   总被引:12,自引:0,他引:12  
L Johnsrud  M P Calos  J H Miller 《Cell》1978,15(4):1209-1219
We performed a genetic and sequencing analysis of insertions of the transposon Tn9 into the lac operon of E. coli. Genetic mapping of 70 insertions into lacl and Z shows that starting from the same point on the chromosome, Tn9 goes to at least 50 different points in these two genes. Although there are preferred regions for insertion, these consist of multiple integration points within a small area, as demonstrated by pairwise crosses and restriction mapping. Sequence analysis of three Tn9 insertions reveals that Tn9 integration is associated with a direct repeat of 9 base pairs (bp) of host sequence. We show that these extra 9 nucleotide pairs are generated upon insertion and not brought in with the element.  相似文献   

15.
IS50-mediated inverse transposition: specificity and precision   总被引:4,自引:0,他引:4  
D K Nag  U DasGupta  G Adelt  D E Berg 《Gene》1985,34(1):17-26
The IS50 elements, which are present as inverted repeats in the kanamycin-resistance transposon, Tn5, can move in unison carrying with them any interstitial DNA segment. In consequence, DNA molecules such as a lambda::Tn5 phage genome are composed of two overlapping transposons - the kan segment bracketed by IS50 elements (Tn5), and lambda bracketed by IS50 elements. During direct transposition, mediated by IS50 "O" (outside) ends, the kan gene is moved and the lambda vector is left behind. During inverse transposition, mediated by the "I" (inside) ends of the IS50 elements, the lambda vector segment is moved and the kan gene is left behind. Direct transposition is several orders of magnitude more frequent than inverse transposition (Isberg and Syvanen, 1981; Sasakawa and Berg, 1982). We assessed the specificity and precision of the rare events mediated by pairs of I ends by mapping and sequencing independent inverse transpositions from a lambda::Tn5 phage into the amp and tet genes of plasmid pBR322. Using restriction analyses, 32 and 40 distinct sites of insertion were found among 46 and 72 independent inverse transpositions into the amp and tet genes, respectively. Eleven sites were used in two or more insertion events, and the two sites in tet used most frequently corresponded to major hotspots for the insertion of the Tn5 (by direct transposition). The sequences of 22 sites of inverse transposition (including each of the sites used more than once) were determined, in eleven cases by analyzing both pBR322-IS50 junctions, and in eleven others by sequencing one junction. The sequence of the "I" end of IS50 was preserved and 9-bp target sequence duplications were present in every case analyzed. GC pairs were found at each end of the target sequence duplication in ten of the eleven sites used more than once, and also in seven of the other eleven sites. Our data indicate that transposition mediated by pairs of "I" ends is similar in its specificity and precision to the more frequent transposition mediated by IS50 "O" ends.  相似文献   

16.
We have exploited the intramolecular transposition preference of the Tn 5 in vitro transposition system to test its effectiveness as a tool for generation of nested families of deletions and inversions. A synthetic transposon was constructed containing an ori, an ampicillin resistance (Ampr) gene, a multi-cloning site (MCS) and two hyperactive end sequences. The donor DNA that adjoins the transposon contains a kanamycin resistance (Kanr) gene. Any Amprreplicating plasmid that has undergone a transposition event (Kans) will be targeted primarily to any insert in the MCS. Two different size targets were tested in the in vitro system. Synthetic transposon plasmids containing either target were incubated in the presence of purified transposase (Tnp) protein and transformed. Transposition frequencies (Ampr/Kans) for both targets were found to be 30-50%, of which >95% occur within the target sequence, in an apparently random manner. By a conservative estimate 10(5) or more deletions/inversions within a given segment of DNA can be expected from a single one-step 20 microl transposition reaction. These nested deletions can be used for structure-function analysis of proteins and for sequence analysis. The inversions provide nested sequencing templates of the opposite strand from the deletions.  相似文献   

17.
Summary Insertion of Tn3 generates a five base pair repeat of a nucleotide sequence indigenous to the recipient genome. Tn3 promoted deletions extend precisely from the Tn3 terminus and remove one of the 5 base pair repeats while not affecting the ability of Tn3 to subsequently undergo translocation. A direct repeat of a 10 bp sequence located in the Tn3 termini occurs internally within Tn3 and may affect the orientation of insertion.  相似文献   

18.
B Reiss  R Sprengel    H Schaller 《The EMBO journal》1984,3(13):3317-3322
The gene for the neomycin phosphotransferase II (NPT II) from transposon Tn5 was fused at the amino or carboxy terminus to foreign DNA sequences coding for 3-300 amino acids and the properties of the fused proteins were investigated. All amino-terminal fusions examined conferred kanamycin resistance to their host cell, but profound differences in their enzymatic activity and stability were detected. Short additions to the amino terminus of the NPT II resulted in highly enzymatically active fusion proteins whereas long amino-terminal fusions often had to be proteolytically degraded to release active proteins. Fusions at the carboxy-terminal end of the NPT II protein did not always induce kanamycin resistance and their enzymatic activity depended more stringently on the nature of the junction sequence.  相似文献   

19.
20.
From a collection of kanamycin-resistant mutants of Escherichia coli K-12 isolated by transposon Tn5 mutagenesis, we have identified a mutant that lacks functional biodegradative threonine dehydratase (EC 4.2.1.16) by direct enzyme assay and by the loss of cross-reacting material with affinity-purified antibodies against the purified enzyme. Aerobic and anaerobic growth of this strain on various carbon sources failed to reveal a phenotype. Evidence for the insertional inactivation of threonine dehydratase by Tn5 was obtained by cloning the DNA segments flanking the Tn5 insertion site into pBR322 and hybridizing the cloned DNA to a synthetic oligodeoxynucleotide probe complementary to the DNA segment coding for a unique hexapeptide at the amino terminus end of the enzyme; the region of homology to the synthetic cDNA sequence appears to be located within about 500 nucleotides from one end of Tn5. Genetic analysis with the transposon element that caused insertional inactivation located the tdc gene at min 67 on the E. coli chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号