首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mechanically skinned fibers of the semitendinosus muscle of bullfrogs, we examined the role of membrane sulfhydryl groups on Ca2+ release from the sarcoplasmic reticulum (SR). Hg2+, a sulfhydryl reagent (20-100 microM), induced a repetitive contracture of skinned fibers, and this contracture did not occur in skinned fibers in which the SR had been disrupted by treatment with a detergent (Brij 58). Procaine (10 mM), Mg2+ (5 mM), or dithiothreitol (1 mM) blocked the Hg2+-induced contracture. Ag+ or p-chloromercuribenzenesulfonic acid produced similar contractures to that induced by Hg2+. We conclude that Hg2+ releases Ca2+ from SR of a skinned fiber by modifying sulfhydryl groups on the SR membrane, and suggest that the Ca2+ released by Hg2+ may trigger a greater release of Ca2+ from SR to develop tension.  相似文献   

2.
The relationship between the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of skeletal muscle cells has remained obscure. In this study, we found that ER- and SR-specific membrane proteins exhibited diverse solubility properties when extracted with mild detergents. Accordingly, the major SR-specific protein Ca(2+)-ATPase (SERCA) remained insoluble in Brij 58 and floated in sucrose gradients while typical ER proteins were partially or fully soluble. Sphingomyelinase treatment rendered SERCA soluble in Brij 58. Immunofluorescence staining for resident ER proteins revealed dispersed dots over I bands contrasting the continuous staining pattern of SERCA. Infection of isolated myofibers with enveloped viruses indicated that interfibrillar protein synthesis occurred. Furthermore, we found that GFP-tagged Dad1, able to incorporate into the oligosaccharyltransferase complex, showed the dot-like structures but the fusion protein was also present in membranes over the Z lines. This behaviour mimics that of cargo proteins that accumulated over the Z lines when blocked in the ER. Taken together, the results suggest that resident ER proteins comprised Brij 58-soluble microdomains within the insoluble SR membrane. After synthesis and folding in the ER-microdomains, cargo proteins and non-incorporated GFP-Dad1 diffused into the Z line-flanking compartment which likely represents the ER exit sites.  相似文献   

3.
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin. Dystrophin's function is not known, but its cellular location and associations with both the force-generating contractile core and membrane-spanning entities suggest a role in mechanically coupling force from its intracellular origins to the fiber membrane and beyond. We report here the presence of destructive contractile activity in lumbrical muscles from dystrophin-deficient (mdx) mice during nominally quiescent periods following exposure to mechanical stress. The ectopic activity, which was observable microscopically, resulted in longitudinal separation and clotting of fiber myoplasm and was absent when calcium (Ca(2+)) was removed from the bathing medium. Separation and clotting of myoplasm were also produced in dystrophin-deficient muscles by local application of a Ca(2+) ionophore to create membrane breaches in the absence of mechanical stress, whereas muscles from control mice tolerated ionophore-induced entry of Ca(2+) without damage. These observations suggest a failure cascade in dystrophin-deficient fibers that 1) is initiated by a stress-induced influx of extracellular Ca(2+), causing localized activation to continue after cessation of stimulation, and 2) proceeds as the persistent local activation, combined with reduced lateral mechanical coupling between the contractile core and the extracellular matrix, results in longitudinal separation of myoplasm in nonactivated regions of the fiber. This mechanism invokes both the membrane stabilization and the mechanical coupling functions frequently proposed for dystrophin and suggests that, whereas the absence of either function alone is not sufficient to cause fiber failure, their combined absence is catastrophic.  相似文献   

4.
Changes in contractility and ATPase activity of SR from hearts of hypothyroid rats were investigated. Rats were made hypothyroid by daily injection of 100 mg/kg methimazole for 14 days. In methimazole-treated rats, the contractile force, the maximum velocity of tension development and relaxation were significantly decreased, however, the time to peak tension remained unchanged. Function of SR was studied by determining of Ca2+-activated ATPase activity, which was significantly decreased after methimazole treatment. This diminution may be partially responsible for a slower reduction of the free Ca2+ in the surroundings of contractile proteins and thus decrease the rate of relaxation.  相似文献   

5.
Efforts to examine the relevant mechanisms involved in skeletal muscle fatigue are focusing on Ca(2+) handling within the active muscle cell. It has been demonstrated time and again that reductions in sarcoplasmic reticulum (SR) Ca(2+) release resulting from increased or intense muscle contraction will compromise tension development. This review seeks to accomplish two related goals: 1) to provide an up-to-date molecular understanding of the Ca(2+)-release process, with considerable attention devoted to the SR Ca(2+) channel, including its associated proteins and their regulation by endogenous compounds; and 2) to examine several putative mechanisms by which cellular alterations resulting from intense and/or prolonged contractile activity will modify SR Ca(2+) release. The mechanisms that are likely candidates to explain the reductions in SR Ca(2+) channel function following contractile activity include elevated Ca(2+) concentrations, alterations in metabolic homeostasis within the "microcompartmentalized" triadic space, and modification by reactive oxygen species.  相似文献   

6.
Force decline during fatigue in skeletal muscle is attributed mainly to progressive alterations of the intracellular milieu. Metabolite changes and the decline in free myoplasmic calcium influence the activation and contractile processes. This study was aimed at evaluating whether fatigue also causes persistent modifications of key myofibrillar and sarcoplasmic reticulum (SR) proteins that contribute to tension reduction. The presence of such modifications was investigated in chemically skinned fibers, a procedure that replaces the fatigued cytoplasm from the muscle fiber with a normal medium. Myofibrillar Ca(2+) sensitivity was reduced in slow-twitch muscle (for example, the pCa value corresponding to 50% of maximum tension was 6.23 +/- 0.03 vs. 5.99 + 0.05, P < 0.01, in rested and fatigued fibers) and not modified in fast-twitch muscle. Phosphorylation of the regulatory myosin light chain isoform increased in fast-twitch muscle. The rate of SR Ca(2+) uptake was increased in slow-twitch muscle fibers (14.2 +/- 1.0 vs. 19.6 +/- 2. 5 nmol. min(-1). mg fiber protein(-1), P < 0.05) and not altered in fast-twitch fibers. No persistent modifications of SR Ca(2+) release properties were found. These results indicate that persistent modifications of myofibrillar and SR properties contribute to fatigue-induced muscle force decline only in slow fibers. These alterations may be either enhanced or counteracted, in vivo, by the metabolic changes that normally occur during fatigue development.  相似文献   

7.
The properties of the contractile elements interacting to develop force in atrophied rat soleus muscle were studied by using single skinned fibers, which permitted direct access to the contractile apparatus. Muscle atrophy was induced by 15 days of hindlimb suspension. Suspension resulted in a decrease of maximal tension relative to an important decline in fiber diameter. Ca affinity of the contractile proteins was not changed insofar as the tension-pCa relationship was not shifted along the pCa axis. However, after hindlimb suspension 1) the value of the Hill coefficient from the tension-pCa curve was found to be higher, 2) a higher Ca threshold for activation was reported, and 3) a significant increase in contraction kinetics was described. All these results suggested that after suspension the mechanical properties of the slow-twitch soleus appeared to resemble more closely those of a fast-twitch muscle. Our results were in complete agreement with published histochemical data.  相似文献   

8.
An isometric muscle preparation was used to study the inhibitory effect of ryanodine on contractile function in isolated ventricular trabeculae of the Pacific mackerel (Scomber japonicus). Ryanodine (an inhibitor of sarcoplasmic reticulum (SR) function) caused a 20% reduction in peak tension at 20 degrees C, but not 15 degrees C, over the range of frequencies (0.2-3.0 Hz) tested. This indicates that in the absence of a functional SR, the mackerel ventricle can maintain most of its contractile strength utilizing other modes of Ca(2+) delivery to the myofilaments. Ca(2+) flux through the sarcolemmal (SL) L-type Ca(2+)-channels is most likely the predominant pathway for Ca(2+) activation of the myofilaments, although reverse mode Na(+)/Ca(2+) exchange could potentially contribute to a significant extent. High levels of adrenergic stimulation overwhelmed the negative inotropy caused by ryanodine, returning tension to pre-ryanodine levels, further suggesting that the mackerel ventricle can maintain contractile function without Ca(2+) contribution from the SR. These results are discussed within the context of what is known about SR Ca(2+) utilization in rainbow trout and tuna hearts.  相似文献   

9.
Relaxation is the process by which, after contraction, the muscle actively returns to its initial conditions of length and load. In rhythmically active muscles such as diaphragm, relaxation is of physiological importance because diaphragm must return to a relatively constant resting position at the end of each contraction-relaxation cycle. Rapid and complete relaxation of the diaphragm is likely to play an important role in adaptation to changes in respiratory load and breathing frequency. Regulation of diaphragm relaxation at the molecular and cellular levels involves Ca(2+) removal from the myofilaments, active Ca(2+) pumping by the sarcoplasmic reticulum (SR), and decrease in the number of working cross bridges. The relative contribution of these mechanisms mainly depends on sarcomere length, muscle tension, and the intrinsic contractile function. Increased capacity of SR to take up Ca(2+) can arise from increased density of active SR pumping sites or in slow-twitch fibers from phosphorylation of phospholamban, whereas impaired coupling between ATP hydrolysis and Ca(2+) transport into the SR or intracellular acidosis reduces SR Ca(2+) pump activity. In experimental conditions of decreased contractile performance, slowed, enhanced, or unchanged relaxation rates have been reported in vitro. In vivo, a slowing in the rate of decline of the respiratory pressure is generally considered an early reliable index of respiratory muscle fatigue. Impaired relaxation rate may, in turn, favor mismatch between blood flow and metabolic demand, especially at high breathing frequencies.  相似文献   

10.
Developmental changes in cardiac sarcoplasmic reticulum in sheep   总被引:4,自引:0,他引:4  
Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60% (p less than 0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30% (p less than 0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p less than 0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alterations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.  相似文献   

11.
The neural message is known to play a key role in muscle development and function. We analyzed the specific role of the afferent message on the functional regulation of two subcellular muscle components involved in the contractile mechanism: the contractile proteins and the sarcoplasmic reticulum (SR). Rats were submitted to bilateral deafferentation (DEAF group) by section of the dorsal roots L(3) to L(5) after laminectomy. Experiments were carried out in single skinned fibers of the soleus muscle. The maximal force developed by the contractile proteins was increased in the DEAF group compared with control, despite a decrease in muscle mass by 17%. The tension-pCa relationship was shifted toward lower calcium (Ca(2+)) concentrations. Different functional properties of the SR of DEAF soleus were examined by using caffeine-induced contractions. The caffeine sensitivity of the Ca(2+) release was decreased after deafferentation and ryanodine receptor 1 isoform was expressed at a lower level. The rate of Ca(2+) uptake was only slightly increased. The results underlined the dual effect of the afferent input on the functional regulation of both contractile proteins and SR.  相似文献   

12.
Aging is associated with a slowing of skeletal muscle contractile properties, including a decreased rate of relaxation. In rats, the age-related decrease in the maximal rate of relaxation is reversed after 4-wk administration with the beta2-adrenoceptor agonist (beta2-agonist) fenoterol. Given the critical role of the sarcoplasmic reticulum (SR) in regulating intracellular Ca2+ transients and ultimately the time course of muscle contraction and relaxation, we tested the hypothesis that the mechanisms of action of fenoterol are mediated by alterations in SR proteins. Sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) kinetic properties were assessed in muscle homogenates and enriched SR membranes isolated from the red (RG) and white (WG) portions of the gastrocnemius muscle in adult (16 mo) and aged (28 mo) F344 rats that had been administered fenoterol for 4 wk (1.4 mg/kg/day ip, in saline) or vehicle only. Aging was associated with a 29% decrease in the maximal activity (Vmax) of SERCA in the RG but not in the WG muscles. Fenoterol treatment increased the Vmax of SERCA and SERCA1 protein levels in RG and WG. In the RG, fenoterol administration reversed an age-related selective nitration of the SERCA2a isoform. Our findings demonstrate that the mechanisms underlying age-related changes in contractile properties are fiber type dependent, whereas the effects of fenoterol administration are independent of age and fiber type.  相似文献   

13.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

14.
Interactions between delipidated Ca2+-ATPase from sarcoplasmic reticulum and four nonionic detergents--dodecyl octaoxyethyleneglycol monoether (C12E8), Triton X-100, Brij 58, and Brij 35--were characterized with respect to activation of ATPase activity, binding, and solubilization. C12E8 and Triton X-100 activated the delipidated ATPase to at least 80% of the original activity at the critical micelle concentrations (CMCs), whereas Brij 58 and Brij 35 activated no more than 10% of the original activity. The inability of Brij 58 and Brij 35 to activate the delipidated enzyme was probably a result of reduced binding of these detergents below the CMCs; both detergents exhibited a sixteenfold reduction in binding at the CMC compared with C12E8. The two Brij detergents were also unable to solubilize the delipidated enzyme and form monomers, as determined by sedimentation experiments. Thus the reduced binding levels of these detergents may result from an inability to overcome protein/protein interactions in the delipidated preparation. However, the Brij detergents were capable of solubilizing active enzyme from membrane vesicles, although with lower efficiency than C12E8 and Triton X-100. These results suggest that Brij 58 and 35 may be useful for solubilization of membrane proteins without disrupting protein/protein interactions, while Triton X-100 and C12E8 are more useful when bulk solubilization is the goal.  相似文献   

15.
Previous reports indicate that reactive oxygen species (ROS) may modulate contractility in skeletal muscle. Although Ca(2+)-sensitivity of the contractile apparatus appears to be a primary site of regulation, dihydropyridine receptor (DHPR or L-type Ca(2+) channels) and calcium efflux in isolated sarcoplasmic reticulum (SR) vesicles appear to be redox sensitive as well. However, DHPR as a target is poorly understood in intact muscles at body temperature, particularly in the diaphragm, a muscle more dependent on external Ca(2+) than locomotor muscles. Previously, we reported that oxidant challenge via xanthine oxidase (XO) alters the K(+) contractures in diaphragm fiber bundles, suggestive of a role of L-type Ca(2+) channels. Contractility of isolated rat diaphragm fiber bundles revealed a biphasic response to ROS challenge that was dose and time dependent. Potentiation of twitch and low-frequency diaphragm fiber bundle contractility with 0.02 U?ml(-1) XO was reversible or partially preventable with washout, dithiothreitol, and the SOD/catalase mimetic EUK-134. The RyR antagonist ruthenium red inhibited xanthine oxidase-induced potentiation, while the RyR agonist caffeine elevated diaphragm twitch and low-frequency tension in a non-additive manner by 55% when introduced simultaneously with ROS challenge. The DHPR antagonist nitrendipine (15 μM) inhibited elevation in low-frequency diaphragm tension produced by ROS challenge. Caffeine threshold tension curves were shifted to the left with 0.02 U?ml(-1) XO, but this effect was partially reversed with 15 μM nitrendipine. These results are consistent with the hypothesis that DHPR redox state and RyR function are modulated in an interactive manner, affecting contractility in intact diaphragm fiber bundles.  相似文献   

16.
Previous studies have shown that acidosis increases myoplasmic [Ca2+] (Cai). We have investigated whether this facilitates spontaneous sarcoplasmic reticulum (SR) Ca2+ release and its functional sequelae. In unstimulated rat papillary muscles, exposure to an acid solution (produced by increasing the [CO2] of the perfusate from 5 to 20%) caused a rapid increase in the mean tissue Cai, as measured by the photoprotein aequorin. This was paralleled by an increase in spontaneous microscopic tissue motion caused by localized Ca2+ myofilament interactions, as monitored in fluctuations in the intensity of laser light scattered by the muscle. In regularly stimulated muscles, acidosis increased the size of the Ca2+ transient associated with each contraction and caused the appearance of Cai oscillations in the diastolic period. In unstimulated single myocytes, acidosis depolarized the resting membrane potential by approximately 5 mV and enhanced the frequency of spontaneous contractile waves. The small sarcolemmal depolarization associated with each contractile wave increased and occasionally initiated spontaneous action potentials. In regularly stimulated myocytes, acidosis caused de novo spontaneous contractile waves between twitches; these waves were associated with a decrease in the amplitude of the subsequent stimulated twitch. Ryanodine (2 microM) abolished all evidence of spontaneous Ca2+ release during acidosis, markedly reduced the acidosis-induced increase in aequorin light, and reduced resting tension. We conclude that acidosis increases the likelihood for the occurrence of spontaneous SR Ca2+ release, which can cause spontaneous action potentials, increase resting tension, and negatively affect twitch tension.  相似文献   

17.
When caffeine evokes a contraction, and only then, crayfish muscle fibers become refractory to a second challenge with caffeine for up to 20 min in the standard saline (5 mM Ko). However, the fibers still respond with contraction to an increase in Ko, though with diminished tension. Addition of Mn slows recovery, but the latter is greatly accelerated during exposure of the fiber to high Ko, or after a brief challenge with high Ko. Neither the depolarization induced by the K, nor the repolarization after its removal accounts for the acceleration, which occurs only if the challenge with K had itself activated the contractile system; acceleration is blocked when contractile responses to K are blocked by reducing the Ca in the bath or by adding Mn. Recovery is accelerated by redistribution of intracellular Cl and by trains of intracellularly applied depolarizing pulses, but not by hyperpolarization. The findings indicate that two sources of Ca can be mobilized to activate the contractile system. Caffeine mobilizes principally the Ca store of the SR. Depolarizations that are induced by high Ko, by transient efflux of Cl, or by intracellularly applied currents mobilize another source of Ca which is strongly dependent upon the entry of Ca from the bathing medium. The sequestering mechanism of the SR apparently can utilize this second source of Ca to replenish its own store so as to accelerate recovery of responsiveness to a new challenge with caffeine.  相似文献   

18.
To observe the binding of plasmid DNA to non-nuclear DNA binding proteins in sar-coplasmic reticulum (SR) and the effects of this binding on SR function, sarcoplasmic reticulum proteins in rat skeletal muscle were isolated by differential centrifuge and sucrose density-gradient centrifuge. The results showed that there are two sequence-independent DNA binding proteins in SR proteins, the molecular weights of which are 83 and 58 ku, respectively. Ca2 uptake and release of SR were remarkably promoted by the binding of plasmid DNA to DNA binding proteins in SR, the mechanism is probably through increasing of Ca2 -ATPase activity in SR and changing of character of Ca2 release channel ryanodine receptors induced by the binding. These results suggest that there exist DNA binding proteins in SR and its binding to DNA may affect Ca2 transport of SR.  相似文献   

19.
20.
Corticosteroids are thought to be involved in the maintenance of normal myocardial function by mechanisms incompletely understood. This study investigated the potential therapeutic benefit of the synthetic glucocorticoid, dexamethasone, in reversing age-associated deterioration in cardiac contractile performance and Ca2+ sequestration function of the sarcoplasmic reticulum. Dexamethasone was administered to senescent (26-28-month old), male Fischer 344 rats at a rate of 4 microg/h for 5 days via subcutaneously implanted osmotic mini pumps. Control rats received vehicle solution in similar manner. Contractile performance was assessed in Langendorff-perfused, electrically paced hearts from control and dexamethasone-treated rats. The results obtained showed that dexamethasone-treatment of aged rats resulted in significant improvement in myocardial contractile performance as evidenced by (i) increase (approximately 30-60%) in developed peak tension at a wide range of beating frequencies (2-6 Hz), (ii) unaltered time to peak tension, and (iii) decrease (approximately 8-15%) in time to half-relaxation. Also, SR isolated from dexamethasone-treated rats displayed approximately 2-fold higher rates of ATP-energized Ca2+ uptake compared to SR from control rats. The deficits in contractile performance of the senescent heart (prolonged contraction duration and diminished contractile force) are reversible through a glucocorticoid-mediated improvement in SR Ca2+ pump function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号