首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Azotobacter vinelandii NafY protein (nitrogenase accessory factor Y) is able to bind either to the iron molybdenum cofactor (FeMo-co) or to apodinitrogenase and is believed to facilitate the transfer of FeMo-co into apodinitrogenase. The NafY protein has two domains: an N-terminal domain (residues Met1-Leu98) and a C-terminal domain (residues Glu99-Ser232), referred here to as the "core domain." The core domain of NafY is shown here to be capable of binding the FeMo cofactor of nitrogenase but unable to bind to apodinitrogenase in the absence of the first domain. The three-dimensional molecular structure of the core domain of NafY has been solved to 1.8-A resolution, revealing that the protein consists of a mixed five-stranded beta-sheet flanked by five alpha-helices that belongs to the ribonuclease H superfamily. As such, this represents a new fold capable of binding FeMo-co, where the only previous example was that seen in dinitrogenase.  相似文献   

2.
The formation of an active dinitrogenase requires the synthesis and the insertion of the iron-molybdenum cofactor (FeMo-co) into a presynthesized apodinitrogenase. In Azotobacter vinelandii, NafY (also known as gamma protein) has been proposed to be a FeMo-co insertase because of its ability to bind FeMo-co and apodinitrogenase. Here we report the purification and biochemical characterization of NafY and reach the following conclusions. First, NafY is a 26-kDa monomeric protein that binds one molecule of FeMo-co with very high affinity (K(d) approximately equal to 60 nm); second, the NafY-FeMo-co complex exhibits a S = 3/2 EPR signal with features similar to the signals for extracted FeMo-co and the M center of dinitrogenase; third, site-directed mutagenesis of nafY indicates that the His(121) residue of NafY is involved in cofactor binding; and fourth, NafY binding to apodinitrogenase or to FeMo-co does not require the presence of any additional protein. In addition, we have obtained evidence that suggests the ability of NafY to bind NifB-co, an FeS cluster of unknown structure that is a biosynthetic precursor to FeMo-co.  相似文献   

3.
4.
Ste11, a homologue of mammalian MAPKKKs, together with its binding partner Ste50 works in a number of MAPK signaling pathways of Saccharomyces cerevisiae. Ste11/Ste50 binding is mediated by their sterile alpha motifs or SAM domains, of which homologues are also found in many other intracellular signaling and regulatory proteins. Here, we present the solution structure of the SAM domain or residues D37-R104 of Ste11 and its interactions with the cognate SAM domain-containing region of Ste50, residues M27-Q131. NMR pulse-field-gradient (PFG) and rotational correlation time measurements (tauc) establish that the Ste11 SAM domain exists predominantly as a symmetric dimer in solution. The solution structure of the dimeric Ste11 SAM domain consists of five well-defined helices per monomer packed into a compact globular structure. The dimeric structure of the SAM domain is maintained by a novel dimer interface involving interactions between a number of hydrophobic residues situated on helix 4 and at the beginning of the C-terminal long helix (helix 5). The dimer structure may also be stabilized by potential salt bridge interactions across the interface. NMR H/2H exchange experiments showed that binding of the Ste50 SAM to the Ste11 SAM very likely involves the positively charged extreme C-terminal region as well as exposed hydrophobic patches of the dimeric Ste11 SAM domain. The dimeric structure of the Ste11 SAM and its interactions with the Ste50 SAM may have important roles in the regulation and activation of the Ste11 kinase and signal transmission and amplifications through the Ste50-Ste11 complex.  相似文献   

5.
6.
7.
8.
9.
RNA recognition via the SAM domain of Smaug   总被引:1,自引:0,他引:1  
The Nanos protein gradient in Drosophila, required for proper abdominal segmentation, is generated in part via translational repression of its mRNA by Smaug. We report here the crystal structure of the Smaug RNA binding domain, which shows no sequence homology to any previously characterized RNA binding motif. The structure reveals an unusual makeup in which a SAM domain, a common protein-protein interaction module, is affixed to a pseudo-HEAT repeat analogous topology (PHAT) domain. Unexpectedly, we find through a combination of structural and genetic analysis that it is primarily the SAM domain that interacts specifically with the appropriate nanos mRNA regulatory sequence. Therefore, in addition to their previously characterized roles in protein-protein interactions, some SAM domains play crucial roles in RNA binding.  相似文献   

10.
Biosynthesis of metal clusters for the nitrogenase component proteins NifH and NifDK involves electron donation events. Yet, electron donors specific to the biosynthetic pathways of the [4Fe–4S] cluster of NifH, or the P-cluster and the FeMo-co of NifDK, have not been identified. Here we show that an Azotobacter vinelandii mutant lacking fdxN was specifically impaired in FeMo-co biosynthesis. The ΔfdxN mutant produced 5-fold less NifB-co, an early FeMo-co biosynthetic intermediate, than wild type. As a consequence, it accumulated FeMo-co-deficient apo-NifDK and was impaired in NifDK activity. We conclude that FdxN plays a role in FeMo-co biosynthesis, presumably by donating electrons to support NifB-co synthesis by NifB. This is the first role in nitrogenase biosynthesis unequivocally assigned to any A. vinelandii ferredoxin.  相似文献   

11.
Li H  Fung KL  Jin DY  Chung SS  Ching YP  Ng IO  Sze KH  Ko BC  Sun H 《Proteins》2007,67(4):1154-1166
The deleted in liver cancer 2 (DLC2) is a tumor suppressor gene, frequently found to be underexpressed in hepatocellular carcinoma. DLC2 is a multidomain protein containing a sterile alpha-motif (SAM) domain, a GTPase-activating protein (GAP) domain, and a lipid-binding StAR-related lipid-transfer (START) domain. The SAM domain of DLC2, DLC2-SAM, exhibits a low level of sequence homology (15-30%) with other SAM domains, and appears to be the prototype of a new subfamily of SAM domains found in DLC2-related proteins. In the present study, we have determined the three-dimensional solution structure of DLC2-SAM using NMR methods together with molecular dynamics simulated annealing. In addition, we performed a backbone dynamics study. The DLC2-SAM packed as a unique four alpha-helical bundle stabilized by interhelix hydrophobic interactions. The arrangement of the four helices is distinct from all other known SAM domains. In contrast to some members of the SAM domain family which form either dimers or oligomers, both biochemical analyses and rotational correlation time (tau(c)) measured by backbone 15N relaxation experiments indicated that DLC2-SAM exists as a monomer in solution. The interaction of DLC2-SAM domain with sodium dodecyl sulfate (SDS) micelles and 1,2-dimyristoyl-sn-glycerol-3-phosphatidylglycerol (DMPG) phospholipids was examined by CD and NMR spectroscopic techniques. The DLC2-SAM exhibits membrane binding properties accompanied by minor loss of the secondary structure of the protein. Deletion studies showed that the self-association of DLC2 in vivo does not require SAM domain, instead, a protein domain consisting of residues 120-672 mediates the self-association of DLC2.  相似文献   

12.
13.
14.
15.
Anamorsin is a recently identified molecule that inhibits apoptosis during hematopoiesis. It contains an N‐terminal methyltransferase‐like domain and a C‐terminal Fe‐S cluster motif. Not much is known about the function of the protein. To better understand the function of anamorsin, we have solved the crystal structure of the N‐terminal domain at 1.8 Å resolution. Although the overall structure resembles a typical S‐adenosylmethionine (SAM) dependent methyltransferase fold, it lacks one α‐helix and one β‐strand. As a result, the N‐terminal domain as well as the full‐length anamorsin did not show S‐adenosyl‐l ‐methionine (AdoMet) dependent methyltransferase activity. Structural comparisons with known AdoMet dependent methyltransferases reveals subtle differences in the SAM binding pocket that preclude the N‐terminal domain from binding to AdoMet. The N‐terminal methyltransferase‐like domain of anamorsin probably functions as a structural scaffold to inhibit methyl transfers by out‐competing other AdoMet dependant methyltransferases or acts as bait for protein–protein interactions.Proteins 2014; 82:1066–1071. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The sterile alpha motif (SAM) domains are among the most versatile protein domains in biology, and the variety of the oligomerization states contribute to their diverse roles in many diseases. A better understanding of the structure and dynamics of various SAM domains will provide a scientific basis for drug development targeting them. Here, we used SEC-MALS, HPLC, NMR, and other biophysical techniques to characterize the structural features and dynamics of the SAM1 domain in SASH1. SASH1 is a scaffold protein belonging to the same family as SASH3. Unlike the dimerization seen in SASH3′s SAM domain, our SEC-MALS and SE-HPLC showed that SAM1 exists primarily as a less compact monomer with a minor oligomer. NMR assignment, relaxation, and exchange experiments revealed the presence of both a disordered monomer and a more structured oligomer with multiple timescale exchange regimes in solution. Mutagenesis and SE-HPLC showed that D663A/T664K substitutions in SAM1 increased its oligomerization. In sum, this study is the first to characterize a disordered structure for a SAM domain, provides additional evidence and framework for the diversity of SAM domains, and identifies a region in SAM1 as a potential starting point to further characterize the structural mechanism of oligomerization of the domain.  相似文献   

17.
The sterile alpha motif or SAM domain is one of the most frequently present protein interaction modules with diverse functional attributions. SAM domain of the Ste11 protein of budding yeast plays important roles in mitogen‐activated protein kinase cascades. In the current study, urea‐induced, at subdenaturing concentrations, structural, and dynamical changes in the Ste11 SAM domain have been investigated by nuclear magnetic resonance spectroscopy. Our study revealed that a number of residues from Helix 1 and Helix 5 of the Ste11 SAM domain display plausible alternate conformational states and largest chemical shift perturbations at low urea concentrations. Amide proton (H/D) exchange experiments indicated that Helix 1, loop, and Helix 5 become more susceptible to solvent exchange with increased concentrations of urea. Notably, Helix 1 and Helix 5 are directly involved in binding interactions of the Ste11 SAM domain. Our data further demonstrate that the existence of alternate conformational states around the regions involved in dimeric interactions in native or near native conditions. Proteins 2014; 82:2957–2969. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
p53 Family members p63 and p73 are SAM domain-containing proteins.   总被引:14,自引:0,他引:14       下载免费PDF全文
Homologs of the tumor suppressor p53, called p63 and p73, have been identified. The p63 and p73 family members possess a domain structure similar to p53, but contain variable C-terminal extensions. We find that some of the C-terminal extensions contain Sterile Alpha Motif (SAM) domains. SAM domains are protein modules that are involved in protein-protein interactions. Consistent with this role, the C-terminal SAM domains of the p63 and p73 may regulate function by recruiting other protein effectors.  相似文献   

19.
Crista junctions (CJs) are tubular invaginations of the inner membrane of mitochondria that connect the inner boundary with the cristae membrane. These architectural elements are critical for mitochondrial function. The yeast inner membrane protein Fcj1, called mitofilin in mammals, was reported to be preferentially located at CJs and crucial for their formation. Here we investigate the functional roles of individual domains of Fcj1. The most conserved part of Fcj1, the C-terminal domain, is essential for Fcj1 function. In its absence, formation of CJ is strongly impaired and irregular, and stacked cristae are present. This domain interacts with full-length Fcj1, suggesting a role in oligomer formation. It also interacts with Tob55 of the translocase of outer membrane β-barrel proteins (TOB)/sorting and assembly machinery (SAM) complex, which is required for the insertion of β-barrel proteins into the outer membrane. The association of the TOB/SAM complex with contact sites depends on the presence of Fcj1. The biogenesis of β-barrel proteins is not significantly affected in the absence of Fcj1. However, down-regulation of the TOB/SAM complex leads to altered cristae morphology and a moderate reduction in the number of CJs. We propose that the C-terminal domain of Fcj1 is critical for the interaction of Fcj1 with the TOB/SAM complex and thereby for stabilizing CJs in close proximity to the outer membrane. These results assign novel functions to both the C-terminal domain of Fcj1 and the TOB/SAM complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号