首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substantial fraction of heritability, which hints at the low power of single variant analysis typically used in GWAS. Consequently, many multi-locus shrinkage models have been proposed under a Bayesian framework. However, most use Markov Chain Monte Carlo (MCMC) algorithm, which are time-consuming and challenging to apply to GWAS data. Here, we propose a fast algorithm of Bayesian adaptive lasso using variational inference (BAL-VI). Extensive simulations and real data analysis indicate that our model outperforms the well-known Bayesian lasso and Bayesian adaptive lasso models in accuracy and speed. BAL-VI can complete a simultaneous analysis of a lung cancer GWAS data with ~3400 subjects and ~570,000 SNPs in about half a day.  相似文献   

2.
3.
The pressure to publish novel genetic associations has meant that meta-analysis has been applied to genome-wide association studies without the time for a careful consideration of the methods that are used. This review distinguishes between the use of meta-analysis to validate previously reported genetic associations and its use for gene discovery, and advocates viewing gene discovery as an exploratory screen that requires independent replication instead of treating it as the application of hundreds of thousands of statistical tests. The review considers the use of fixed and random effects meta-analyses, the investigation of between-study heterogeneity, adjustment for confounding, assessing the combined evidence and genomic control, and comments on alternative approaches that have been used in the literature.  相似文献   

4.
The recent crop of results from genome-wide association studies might seem like a sudden development. However, this blooming follows a long germination period during which the necessary concepts, resources and techniques were developed and assembled. Here, I look back at how the necessary pieces fell into place, focusing on the less well-chronicled days before the launch of the HapMap project, and speculate about future developments.  相似文献   

5.
Association mapping has successfully identified common SNPs associated with many diseases. However, the inability of this class of variation to account for most of the supposed heritability has led to a renewed interest in methods - primarily linkage analysis - to detect rare variants. Family designs allow for control of population stratification, investigations of questions such as parent-of-origin effects and other applications that are imperfectly or not readily addressed in case-control association studies. This article guides readers through the interface between linkage and association analysis, reviews the new methodologies and provides useful guidelines for applications. Just as effective SNP-genotyping tools helped to realize the potential of association studies, next-generation sequencing tools will benefit genetic studies by improving the power of family-based approaches.  相似文献   

6.
7.
Das K  Li J  Wang Z  Tong C  Fu G  Li Y  Xu M  Ahn K  Mauger D  Li R  Wu R 《Human genetics》2011,129(6):629-639
Although genome-wide association studies (GWAS) are widely used to identify the genetic and environmental etiology of a trait, several key issues related to their statistical power and biological relevance have remained unexplored. Here, we describe a novel statistical approach, called functional GWAS or fGWAS, to analyze the genetic control of traits by integrating biological principles of trait formation into the GWAS framework through mathematical and statistical bridges. fGWAS can address many fundamental questions, such as the patterns of genetic control over development, the duration of genetic effects, as well as what causes developmental trajectories to change or stop changing. In statistics, fGWAS displays increased power for gene detection by capitalizing on cumulative phenotypic variation in a longitudinal trait over time and increased robustness for manipulating sparse longitudinal data.  相似文献   

8.
Weir BS 《Génome》2010,53(11):869-875
Genotyping technology now allows the rapid and affordable generation of million-SNP profiles for humans, leading to considerable activity in association mapping. Similar activity is anticipated for many plant species, including Brassica. These plant association mapping activities will require the same care in quality control and quality assurance as for humans. The subsequent analyses may draw upon the same body of theory that is described here in the language of quantitative genetics.  相似文献   

9.
Chen Z  Ng HK 《Human heredity》2012,73(1):26-34
In genetic association studies, due to the varying underlying genetic models, no single statistical test can be the most powerful test under all situations. Current studies show that if the underlying genetic models are known, trend-based tests, which outperform the classical Pearson χ2 test, can be constructed. However, when the underlying genetic models are unknown, the χ2 test is usually more robust than trend-based tests. In this paper, we propose a new association test based on a generalized genetic model, namely the generalized order-restricted relative risks model. Through a Monte Carlo simulation study, we show that the proposed association test is generally more powerful than the χ2 test, and more robust than those trend-based tests. The proposed methodologies are also illustrated by some real SNP datasets.  相似文献   

10.

Background  

Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS) to discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide polymorphisms (SNPs), have been identified in a wide spectrum of diseases, including diabetes, cancer, and psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies and statistical approaches are needed to address this lack of explanation. One such approach is the pathway analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This approach leads to preferential identification of genes with a greater number of SNPs.  相似文献   

11.
We describe factored spectrally transformed linear mixed models (FaST-LMM), an algorithm for genome-wide association studies (GWAS) that scales linearly with cohort size in both run time and memory use. On Wellcome Trust data for 15,000 individuals, FaST-LMM ran an order of magnitude faster than current efficient algorithms. Our algorithm can analyze data for 120,000 individuals in just a few hours, whereas current algorithms fail on data for even 20,000 individuals (http://mscompbio.codeplex.com/).  相似文献   

12.
13.
14.
15.
16.

Background  

Discovering the genetic basis of common genetic diseases in the human genome represents a public health issue. However, the dimensionality of the genetic data (up to 1 million genetic markers) and its complexity make the statistical analysis a challenging task.  相似文献   

17.
Dong C  Qian Z  Jia P  Wang Y  Huang W  Li Y 《PloS one》2007,2(12):e1262

Background

The high-throughput genotyping chips have contributed greatly to genome-wide association (GWA) studies to identify novel disease susceptibility single nucleotide polymorphisms (SNPs). The high-density chips are designed using two different SNP selection approaches, the direct gene-centric approach, and the indirect quasi-random SNPs or linkage disequilibrium (LD)-based tagSNPs approaches. Although all these approaches can provide high genome coverage and ascertain variants in genes, it is not clear to which extent these approaches could capture the common genic variants. It is also important to characterize and compare the differences between these approaches.

Methodology/Principal Findings

In our study, by using both the Phase II HapMap data and the disease variants extracted from OMIM, a gene-centric evaluation was first performed to evaluate the ability of the approaches in capturing the disease variants in Caucasian population. Then the distribution patterns of SNPs were also characterized in genic regions, evolutionarily conserved introns and nongenic regions, ontologies and pathways. The results show that, no mater which SNP selection approach is used, the current high-density SNP chips provide very high coverage in genic regions and can capture most of known common disease variants under HapMap frame. The results also show that the differences between the direct and the indirect approaches are relatively small. Both have similar SNP distribution patterns in these gene-centric characteristics.

Conclusions/Significance

This study suggests that the indirect approaches not only have the advantage of high coverage but also are useful for studies focusing on various functional SNPs either in genes or in the conserved regions that the direct approach supports. The study and the annotation of characteristics will be helpful for designing and analyzing GWA studies that aim to identify genetic risk factors involved in common diseases, especially variants in genes and conserved regions.  相似文献   

18.
Han B  Eskin E 《PLoS genetics》2012,8(3):e1002555
Meta-analysis is an increasingly popular tool for combining multiple genome-wide association studies in a single analysis to identify associations with small effect sizes. The effect sizes between studies in a meta-analysis may differ and these differences, or heterogeneity, can be caused by many factors. If heterogeneity is observed in the results of a meta-analysis, interpreting the cause of heterogeneity is important because the correct interpretation can lead to a better understanding of the disease and a more effective design of a replication study. However, interpreting heterogeneous results is difficult. The standard approach of examining the association p-values of the studies does not effectively predict if the effect exists in each study. In this paper, we propose a framework facilitating the interpretation of the results of a meta-analysis. Our framework is based on a new statistic representing the posterior probability that the effect exists in each study, which is estimated utilizing cross-study information. Simulations and application to the real data show that our framework can effectively segregate the studies predicted to have an effect, the studies predicted to not have an effect, and the ambiguous studies that are underpowered. In addition to helping interpretation, the new framework also allows us to develop a new association testing procedure taking into account the existence of effect.  相似文献   

19.
As the extent of human genetic variation becomes more fully characterized, the research community is faced with the challenging task of using this information to dissect the heritable components of complex traits. Genomewide association studies offer great promise in this respect, but their analysis poses formidable difficulties. In this article, we describe a computationally efficient approach to mining genotype-phenotype associations that scales to the size of the data sets currently being collected in such studies. We use discrete graphical models as a data-mining tool, searching for single- or multilocus patterns of association around a causative site. The approach is fully Bayesian, allowing us to incorporate prior knowledge on the spatial dependencies around each marker due to linkage disequilibrium, which reduces considerably the number of possible graphical structures. A Markov chain-Monte Carlo scheme is developed that yields samples from the posterior distribution of graphs conditional on the data from which probabilistic statements about the strength of any genotype-phenotype association can be made. Using data simulated under scenarios that vary in marker density, genotype relative risk of a causative allele, and mode of inheritance, we show that the proposed approach has better localization properties and leads to lower false-positive rates than do single-locus analyses. Finally, we present an application of our method to a quasi-synthetic data set in which data from the CYP2D6 region are embedded within simulated data on 100K single-nucleotide polymorphisms. Analysis is quick (<5 min), and we are able to localize the causative site to a very short interval.  相似文献   

20.

Background

Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding.

Result

To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp.

Conclusion

BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号