首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ca2+ sparks are localized intracellular Ca2+ release events from the sarcoplasmic reticulum in muscle cells that result from synchronized opening of ryanodine receptors (RyR). In mammalian skeletal muscle, RyR1 is the predominant isoform present in adult skeletal fibers, while some RyR3 is expressed during development. Functional studies have revealed a differential role for RyR1 and RyR3 in the overall Ca2+ signaling in skeletal muscle, but the contribution of these two isoforms to Ca2+ sparks in adult mammalian skeletal muscle has not been fully examined. When enzyme-disassociated, individual adult skeletal muscle fibers are exposed to an osmotic shock, the resting fiber converts from a quiescent to a highly active Ca2+ release state where Ca2+ sparks appear proximal to the sarcolemmal membrane. These osmotic shock-induced Ca2+ sparks occur in ryr3(-/-) muscle with a spatial distribution similar to that seen in wild type muscle. Kinetic analysis reveals that systemic ablation of RyR3 results in significant changes to the initiation, duration and amplitude of individual Ca2+ sparks in muscle fibers. These changes may reflect the adaptation of the muscle Ca2+ signaling or contractile machinery due to the loss of RyR3 expression in distal tissues, as biochemical assays identify significant changes in expression of myosin heavy chain protein in ryr3(-/-) muscle.  相似文献   

2.
To better understand the role of the transient expression of ryanodine receptor (RyR) type 3 (RyR3) on Ca2+ homeostasis during the development of skeletal muscle, we have analyzed the effect of expression levels of RyR3 and RyR1 on the overall physiology of cultured myotubes and muscle fibers. Dyspedic myotubes were infected with RyR1 or RyR3 containing virions at 0.2, 0.4, 1.0, and 4.0 moieties of infection (MOI), and analysis of their pattern of expression, caffeine sensitivity, and resting free Ca2+ concentration ([Ca2+]r) was performed. Although increased MOI resulted in increased expression of each receptor isoform, it did not significantly affect the immunopattern of RyRs or the expression levels of calsequestrin, triadin, or FKBP-12. Interestingly, myotubes expressing RyR3 always had significantly higher [Ca2+]r and lower caffeine EC50 than did cells expressing RyR1. Although some of the increased sensitivity of RyR3 to caffeine could be attributed to the higher [Ca2+]r in RyR3-expressing cells, studies of [3H]ryanodine binding demonstrated intrinsic differences in caffeine sensitivity between RyR1 and RyR3. Tibialis anterior (TA) muscle fibers at different stages of postnatal development exhibited a transient increase in [Ca2+]r coordinately with their level of RyR3 expression. Similarly, adult soleus fibers, which also express RyR3, had higher [Ca2+]r than did adult TA fibers, which exclusively express RyR1. These data show that in skeletal muscle, RyR3 increases [Ca2+]r more than RyR1 does at any expression level. These data suggest that the coexpression of RyR1 and RyR3 at different levels may constitute a novel mechanism by which to regulate [Ca2+]r in skeletal muscle. ryanodine receptor; calcium release; ryanodine binding; muscle fibers  相似文献   

3.
The neonatal mammalian skeletal muscle contains both type 1 and type 3 ryanodine receptors (RyR1 and RyR3) located in the sarcoplasmic reticulum membrane. An allosteric interaction between RyR1 and dihydropyridine receptors located in the plasma membrane mediates voltage-induced Ca(2+) release (VICR) from the sarcoplasmic reticulum. RyR3, which disappears in adult muscle, is not involved in VICR, and the role of the transiently expressed RyR3 remains elusive. Here we demonstrate that RyR1 participates in both VICR and Ca(2+)-induced Ca(2+) release (CICR) and that RyR3 amplifies RyR1-mediated CICR in neonatal skeletal muscle. Confocal measurements of intracellular Ca(2+) in primary cultured mouse skeletal myotubes reveal active sites of Ca(2+) release caused by peripheral coupling between dihydropyridine receptors and RyR1. In myotubes lacking RyR3, the peripheral VICR component is unaffected, and RyR1s alone are able to support inward CICR propagation in most cells at an average speed of approximately 190 microm/s. With the co-presence of RyR1 and RyR3 in wild-type cells, unmitigated radial CICR propagates at 2,440 microm/s. Because neonatal skeletal muscle lacks a well developed transverse tubule system, the RyR3 reinforcement of CICR seems to ensure a robust, uniform, and synchronous activation of Ca(2+) release throughout the cell body. Such functional interplay between RyR1 and RyR3 can serve important roles in Ca(2+) signaling of cell differentiation and muscle contraction.  相似文献   

4.
The skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel or ryanodine receptor (RyR1) binds four molecules of FKBP12, and the interaction of FKBP12 with RyR1 regulates both unitary and coupled gating of the channel. We have characterized the physiologic effects of previously identified mutations in RyR1 that disrupt FKBP12 binding (V2461G and V2461I) on excitation-contraction (EC) coupling and intracellular Ca2+ homeostasis following their expression in skeletal myotubes derived from RyR1-knockout (dyspedic) mice. Wild-type RyR1-, V246I-, and V2461G-expressing myotubes exhibited similar resting Ca2+ levels and maximal responses to caffeine (10 mm) and cyclopiazonic acid (30 microm). However, maximal voltage-gated Ca2+ release in V2461G-expressing myotubes was reduced by approximately 50% compared with that attributable to wild-type RyR1 (deltaF/Fmax = 1.6 +/- 0.2 and 3.1 +/- 0.4, respectively). Dyspedic myotubes expressing the V2461I mutant protein, that binds FKBP12.6 but not FKBP12, exhibited a comparable reduction in voltage-gated SR Ca2+ release (deltaF/Fmax = 1.0 +/- 0.1). However, voltage-gated Ca2+ release in V2461I-expressing myotubes was restored to a normal level (deltaF/Fmax = 2.9 +/- 0.6) following co-expression of FKBP12.6. None of the mutations that disrupted FKBP binding to RyR1 significantly affected RyR1-mediated enhancement of L-type Ca2+ channel activity (retrograde coupling). These data demonstrate that FKBP12 binding to RyR1 enhances the gain of skeletal muscle EC coupling.  相似文献   

5.
Ca2+ is an essential second messenger, playing a fundamental role in maintaining cell viability and neuronal activity. Two specific endoplasmic reticulum calcium channels, ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) play an important role in Ca2+ regulation. In the present study, we provided a 3D structure of RyR and IP3R by homology modeling, and we predicted their interactions with a known neuroprotective compound, 3-thiomethyl-5,6-(dimethoxyphenyl)-1,2,4-triazine (TDMT), as well as two inhibitors, dantrolene and 2-aminoethoxydiphenyl borate (2-APB). Interestingly, we found that dantrolene and 2-APB can bind to the IP3-binding domain of IP3R and RyR, while TDMT may directly block both channels by interacting with the putative resident domains in the pore. Cell culture experiments showed that these compounds could protect PC12 cells against H2O2-induced apoptosis and activate autophagic pathways. Collectively, our computational (in silico) and cell culture studies suggest that RyR and IP3R are novel and promising targets to be used against neurodegenerative diseases.  相似文献   

6.
Previously, we have shown that lack of expression of triadins in skeletal muscle cells results in significant increase of myoplasmic resting free Ca(2+) ([Ca(2+)](rest)), suggesting a role for triadins in modulating global intracellular Ca(2+) homeostasis. To understand this mechanism, we study here how triadin alters [Ca(2+)](rest), Ca(2+) release, and Ca(2+) entry pathways using a combination of Ca(2+) microelectrodes, channels reconstituted in bilayer lipid membranes (BLM), Ca(2+), and Mn(2+) imaging analyses of myotubes and RyR1 channels obtained from triadin-null mice. Unlike WT cells, triadin-null myotubes had chronically elevated [Ca(2+)](rest) that was sensitive to inhibition with ryanodine, suggesting that triadin-null cells have increased basal RyR1 activity. Consistently, BLM studies indicate that, unlike WT-RyR1, triadin-null channels more frequently display atypical gating behavior with multiple and stable subconductance states. Accordingly, pulldown analysis and fluorescent FKBP12 binding studies in triadin-null muscles revealed a significant impairment of the FKBP12/RyR1 interaction. Mn(2+) quench rates under resting conditions indicate that triadin-null cells also have higher Ca(2+) entry rates and lower sarcoplasmic reticulum Ca(2+) load than WT cells. Overexpression of FKBP12.6 reverted the null phenotype, reducing resting Ca(2+) entry, recovering sarcoplasmic reticulum Ca(2+) content levels, and restoring near normal [Ca(2+)](rest). Exogenous FKBP12.6 also reduced the RyR1 channel P(o) but did not rescue subconductance behavior. In contrast, FKBP12 neither reduced P(o) nor recovered multiple subconductance gating. These data suggest that elevated [Ca(2+)](rest) in triadin-null myotubes is primarily driven by dysregulated RyR1 channel activity that results in part from impaired FKBP12/RyR1 functional interactions and a secondary increased Ca(2+) entry at rest.  相似文献   

7.
Graded or "quantal" Ca(2+) release from intracellular stores has been observed in various cell types following activation of either ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (InsP(3)R). The mechanism causing the release of Ca(2+) stores in direct proportion to the strength of stimulation is unresolved. We investigated the properties of quantal Ca(2+) release evoked by activation of RyR in PC12 cells, and in particular whether the sensitivity of RyR to the agonist caffeine was altered by lumenal Ca(2+). Quantal Ca(2+) release was observed in cells stimulated with 1 to 40 mM caffeine, a range of caffeine concentrations giving a >10-fold change in lumenal Ca(2+) content. The Ca(2+) load of the caffeine-sensitive stores was modulated by allowing them to refill for varying times after complete discharge with maximal caffeine, or by depolarizing the cells with K(+) to enhance their normal steady-state loading. The threshold for RyR activation was sensitized approximately 10-fold as the Ca(2+) load increased from a minimal to a maximal loading. In addition, the fraction of Ca(2+) released by low caffeine concentrations increased. Our data suggest that RyR are sensitive to lumenal Ca(2+) over the full range of Ca(2+) loads that can be achieved in an intact PC12 cell, and that changes in RyR sensitivity may be responsible for the termination of Ca(2+) release underlying the quantal effect.  相似文献   

8.
9.
ortho-Substituted PCBs mobilize Ca2+ from isolated brain microsomes by interaction with FKBP12/RyR complexes. Investigation into the cellular importance of this mechanism was undertaken using PC12 cells by fluoroimaging the actions of specific PCB congeners on [Ca2+]i and pH. RyR and IP3R share a common intracellular Ca2+ store in PC12 cells. Perfusion of nM to low microM PCB95 caused a transient rise of [Ca2+]i that was not completely dependent on extracellular Ca2+. Pre-incubation of the cells with ryanodine or FK506 completely eliminated PCB95 responses, suggesting a primary action on the FKPP12/RyR-sensitive store. PCB95, but not PCB126, induced a gradual decrease in cytosolic pH that could be completely eliminated by FK506 pre-incubation of the cells. Direct respiration measurement using isolated brain mitochondria demonstrated that neither of the PCBs directly altered any stage of mitochondrial respiration. These results revealed that PCB95 disrupts intracellular Ca2+ signaling in PC12 cells by interaction with the FKBP12/RyR complex that in turn accelerated cellular metabolism, possibly affecting signaling between ER and mitochondria. Since ortho-substituted PCBs have been shown to be neurotoxic and may affect neurodevelopment, studies on the molecular mechanism by which they alter cellular signaling may provide valuable information on the physiological roles of FKPB12 and RyR on neuronal functions.  相似文献   

10.
The ryanodine receptors (RyRs) are intracellular Ca2+ release channels of the sarcoplasmic reticulum (SR) involved in many cellular responses, including muscle excitation-contraction coupling. Multiple biochemical and biophysical methods are available to study RyR functions. However, most of them are somewhat limited because they can only be used to examine channels which are purified from the SR and no longer in their natural environment. In this review we discuss optical methods for studying RyR functions in situ. We describe several techniques for the investigation of local (microscopic) intracellular Ca2+ signals (a.k.a Ca2+ sparks) by means of confocal microscopy and flash photolysis of caged compounds. We discuss how these studies can and will continue to contribute to our understanding of RyR function in physiological and pathological conditions.  相似文献   

11.
Ca2+ homeostasis is a vital cellular control mechanism in which Ca2+ release from intracellular stores plays a central role. Ryanodine receptor (RyR)-mediated Ca2+ release is a key modulator of Ca2+ homeostasis, and the defective regulation of RyR is pathogenic. However, the molecular events underlying RyR-mediated pathology remain undefined. Cells stably expressing recombinant human RyR2 (Chinese hamster ovary cells, CHOhRyR2) had similar resting cytoplasmic Ca2+ levels ([Ca2+]c) to wild-type CHO cells (CHOWT) but exhibited increased cytoplasmic Ca2+ flux associated with decreased cell viability and proliferation. Intracellular Ca2+ flux increased with human RyR2 (hRyR2) expression levels and determined the extent of phenotypic modulation. Co-expression of FKBP12.6, but not FKBP12, or incubation of cells with ryanodine suppressed intracellular Ca2+ flux and restored normal cell viability and proliferation. Restoration of normal phenotype was independent of the status of resting [Ca2+]c or ER Ca2+ load. Heparin inhibition of endogenous inositol trisphosphate receptors (IP3R) had little effect on intracellular Ca2+ handling or viability. However, purinergic stimulation of endogenous IP3R resulted in apoptotic cell death mediated by hRyR2 suggesting functional interaction occurred between IP3R and hRyR2 Ca2+ release channels. These data demonstrate that defective regulation of RyR causes altered cellular phenotype via profound perturbations in intracellular Ca2+ signaling and highlight a key modulatory role of FKBP12.6 in hRyR2 Ca2+ channel function.  相似文献   

12.
In this study we examined the expression of RyR subtypes and the role of RyRs in neurotransmitter- and hypoxia-induced Ca2+ release and contraction in pulmonary artery smooth muscle cells (PASMCs). Under perforated patch clamp conditions, maximal activation of RyRs with caffeine or inositol triphosphate receptors (IP3Rs) with noradrenaline induced equivalent increases in [Ca2+]i and Ca2+-activated Cl- currents in freshly isolated rat PASMCs. Following maximal IP3-induced Ca2+ release, neither caffeine nor chloro-m-cresol induced a response, whereas prior application of caffeine or chloro-m-cresol blocked IP3-induced Ca2+ release. In cultured human PASMCs, which lack functional expression of RyRs, caffeine failed to affect ATP-induced increases in [Ca2+]i in the presence and absence of extracellular Ca2+. The RyR antagonists ruthenium red, ryanodine, tetracaine, and dantrolene greatly inhibited submaximal noradrenaline- and hypoxia-induced Ca2+ release and contraction in freshly isolated rat PASMCs, but did not affect ATP-induced Ca2+ release in cultured human PASMCs. Real-time quantitative RT-PCR and immunofluorescence staining indicated similar expression of all three RyR subtypes (RyR1, RyR2, and RyR3) in freshly isolated rat PASMCs. In freshly isolated PASMCs from RyR3 knockout (RyR3-/-) mice, hypoxia-induced, but not submaximal noradrenaline-induced, Ca2+ release and contraction were significantly reduced. Ruthenium red and tetracaine can further inhibit hypoxic increase in [Ca2+]i in RyR3-/- mouse PASMCs. Collectively, our data suggest that (a) RyRs play an important role in submaximal noradrenaline- and hypoxia-induced Ca2+ release and contraction; (b) all three subtype RyRs are expressed; and (c) RyR3 gene knockout significantly inhibits hypoxia-, but not submaximal noradrenaline-induced Ca2+ and contractile responses in PASMCs.  相似文献   

13.
We characterized type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm by immunoaffinity chromatography using a specific antibody. The purified receptor was free from 12-kDa FK506-binding protein, although it retained the ability to bind 12-kDa FK506-binding protein. Negatively stained images of RyR3 show a characteristic rectangular structure that was indistinguishable from RyR1. The location of the D2 segment, which exists uniquely in the RyR1 isoform, was determined as the region around domain 9 close to the corner of the square-shaped assembly, with use of D2-directed antibody as a probe. The RyR3 homotetramer had a single class of high affinity [3H]ryanodine-binding sites with a stoichiometry of 1 mol/mol. In planar lipid bilayers, RyR3 displayed cation channel activity that was modulated by several ligands including Ca2+, Mg2+, caffeine, and ATP, which is consistent with [3H]ryanodine binding activity. RyR3 showed a slightly larger unit conductance and a longer mean open time than RyR1. Whereas RyR1 showed two classes of channel activity with distinct open probabilities (Po), RyR3 displayed a homogeneous and steeply Ca2+-dependent activity with Po approximately 1. RyR3 was more steeply affected in the channel activity by sulfhydryl-oxidizing and -reducing reagents than RyR1, suggesting that the channel activity of RyR3 may be transformed more precipitously by the redox state. This is also a likely explanation for the difference in the Ca2+ dependence of RyR3 between [3H]ryanodine binding and channel activity.  相似文献   

14.
Malignant hyperthermia (MH) and central core disease (CCD) are disorders of skeletal muscle Ca2+ homeostasis that are linked to mutations in the type 1 ryanodine receptor (RyR1). Certain RyR1 mutations result in an MH-selective phenotype (MH-only), whereas others result in a mixed phenotype (MH + CCD). We characterized effects on Ca2+ handling and excitation-contraction (EC) coupling of MH-only and MH + CCD mutations in RyR1 after expression in skeletal myotubes derived from RyR1-null (dyspedic) mice. Compared to wild-type RyR1-expressing myotubes, MH + CCD- and MH-only-expressing myotubes exhibited voltage-gated Ca2+ release (VGCR) that activated at more negative potentials and displayed a significantly higher incidence of spontaneous Ca2+ oscillations. However, maximal VGCR was reduced only for MH + CCD mutants (Y4795C, R2435L, and R2163H) in which spontaneous Ca2+ oscillations occurred with significantly longer duration (Y4795C and R2435L) or higher frequency (R2163H). Notably, myotubes expressing these MH + CCD mutations in RyR1 exhibited both increased [Ca2+]i and reduced sarcoplasmic reticulum (SR) Ca2+ content. We conclude that MH-only mutations modestly increase basal release-channel activity in a manner insufficient to alter net SR Ca2+ content ("compensated leak"), whereas the mixed MH + CCD phenotype arises from mutations that enhance basal activity to a level sufficient to promote SR Ca2+ depletion, elevate [Ca2+]i, and reduce maximal VGCR ("decompensated leak").  相似文献   

15.
Two distinct skeletal muscle ryanodine receptors (RyR1s) are expressed in a fiber type-specific manner in fish skeletal muscle (11). In this study, we compare [(3)H]ryanodine binding and single channel activity of RyR1-slow from fish slow-twitch skeletal muscle with RyR1-fast and RyR3 isolated from fast-twitch skeletal muscle. Scatchard plots indicate that RyR1-slow has a lower affinity for [(3)H]ryanodine when compared with RyR1-fast. In single channel recordings, RyR1-slow and RyR1-fast had similar slope conductances. However, the maximum open probability (P(o)) of RyR1-slow was threefold less than the maximum P(o) of RyR1-fast. Single channel studies also revealed the presence of two populations of RyRs in tuna fast-twitch muscle (RyR1-fast and RyR3). RyR3 had the highest P(o) of all the RyR channels and displayed less inhibition at millimolar Ca(2+). The addition of 5 mM Mg-ATP or 2.5 mM beta, gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) to the channels increased the P(o) and [(3)H]ryanodine binding of both RyR1s but also caused a shift in the Ca(2+) dependency curve of RyR1-slow such that Ca(2+)-dependent inactivation was attenuated. [(3)H]ryanodine binding data also showed that Mg(2+)-dependent inhibition of RyR1-slow was reduced in the presence of AMP-PCP. These results indicate differences in the physiological properties of RyRs in fish slow- and fast-twitch skeletal muscle, which may contribute to differences in the way intracellular Ca(2+) is regulated in these muscle types.  相似文献   

16.
Functional and molecular biological evidence exists for the expression of ryanodine receptors in non-muscle cells. In the present study, RT-PCR and 5'-rapid amplification of cDNA 5'-end (5'-RACE analysis) provided evidence for the presence of a type 1 ryanodine receptor/Ca2+ channel (RyR1) in diverse cell types. In parotid gland-derived 3-9 (epithelial) cells, the 3'-end 1589 nucleotide sequence for a rat RyR shared 99% homology with rat brain RyR1. Expression of this RyR mRNA sequence in exocrine acinar cells, endocrine cells, and liver in addition to skeletal muscle and cardiac muscle, suggests wide tissue distribution of the RyR1. Positive identification of a 5'-end sequence was made for RyR1 mRNA in rat skeletal muscle and brain, but not in parotid cells, pancreatic islets, insulinoma cells, or liver. These data suggest that a modified RyR1 is present in exocrine and endocrine cells, and liver. Western blot analysis showed L-type Ca2+ channel-related proteins in parotid acinar cells, which were of comparable size to those identified in skeletal and cardiac muscle, and in brain. Immunocytochemistry carried out on intact parotid acini demonstrated that the dihydropyridine receptor was preferentially co-localized with the IP3 receptor in the apical membranes. From these data we conclude that certain non-muscle cells express a modified RyR1 and L-type Ca2+ channel proteins. These receptor/channels may play a role in Ca2+ signaling involving store-operated Ca2+ influx via receptor-mediated channels.  相似文献   

17.
Release of Ca2+ from intracellular stores was studied in the parent PC12 cell line and in recently isolated clones sensitive or insensitive to caffeine. In the caffeine-sensitive cells the cytosolic free Ca2+ concentration ([Ca2+]i) responses by the xanthine drug and by stimulants of receptors coupled to inositol 1,4,5-trisphosphate (Ins-P3) generation (bradykinin, ATP) depend on separate pathways because 1) caffeine does not stimulate the hydrolysis of phosphatidylinositol 4,5-bisphosphate and 2) Ca(2+)-induced Ca2+ release, the process activated by caffeine, plays no major role in the Ins-P3-induced Ca2+ mobilization. Although distinct, these two mechanisms converge onto the same Ca2+ store. In fact 1) the [Ca2+]i responses by receptor agonists and caffeine were not additive; 2) either type of agent reduced (up to complete inhibition) the response to a subsequent administration of the same or the other agent; 3) all these responses were prevented by selective Ca2+ ATPase blockers; 4) ryanodine, which affects the intracellular Ca2+ channel sensitive to caffeine, also induced depletion of the receptor-sensitive Ca2+ pool; 5) in the 10 PC12 clones tested, sensitivity to caffeine paralleled ryanodine sensitivity. Therefore, PC12 cells, similar to some smooth muscle fibers but at variance with neurons and other secretory cells, express a single, rapidly exchanging Ca2+ store in which two distinct intracellular Ca2+ channels, i.e. the receptors for caffeine-ryanodine and Ins-P3, appear to be colocalized.  相似文献   

18.
Although an elevation in myoplasmic Ca2+ can activate the skeletal muscle ryanodine receptor (RyR1), the function of this Ca2+ activation is unclear because extracellular Ca2+ influx is unnecessary for skeletal-type EC coupling. To determine whether Ca2+ activation of RyR1 is necessary for the initiation of skeletal-type EC coupling, we examined the behavior of RyR1 with glutamate 4032 mutated to alanine (E4032A-RyR1) because this mutation had been shown to dramatically reduce activation by Ca2+. Proc. Natl. Acad. Sci. USA. 98:2865-2870). Analysis after reconstitution into planar lipid bilayers revealed that E4032A-RyR1 was negligibly activated by 100 microM Ca2+ (P(o) too low to be measured). Even in the presence of both 2 mM caffeine and 2 mM ATP, P(o) remained low for E4032A-RyR1 (ranging from <0.0001 in 100 microM free Ca2+ to 0.005 in 2 mM free Ca2+). Thus, the E4032A mutation caused a nearly complete suppression of activation of RyR1 by Ca2+. Depolarization of E4032A-RyR1-expressing myotubes elicited L-type Ca2+ currents of approximately normal size and myoplasmic Ca2+ transients that were skeletal-type, but about fivefold smaller than those for wild-type RyR1. The reduced amplitude of the Ca2+ transient is consistent either with the possibility that Ca2+ activation amplifies Ca2+ release during EC coupling, or that the E4032A mutation generally inhibits activation of RyR1. In either case, Ca2+ activation of RyR1 does not appear to be necessary for the initiation of Ca2+ release during EC coupling in skeletal muscle.  相似文献   

19.
Whether or not the sarcoplasmic reticulum (SR) is a continuous, interconnected network surrounding a single lumen or comprises multiple, separate Ca2+ pools was investigated in voltage-clamped single smooth muscle cells using local photolysis of caged compounds and Ca2+ imaging. The entire SR could be depleted or refilled from one small site via either inositol 1,4,5-trisphosphate receptors (IP3R) or ryanodine receptors (RyR) suggesting the SR is luminally continuous and that Ca2+ may diffuse freely throughout. Notwithstanding, regulation of the opening of RyR and IP3R, by the [Ca2+] within the SR, may create several apparent SR elements with various receptor arrangements. IP3R and RyR may appear to exist entirely on a single store, and there may seem to be additional SR elements that express either only RyR or only IP3R. The various SR receptor arrangements and apparently separate Ca2+ storage elements exist in a single luminally continuous SR entity.  相似文献   

20.
Perturbation of intracellular Ca2+ homeostasis has been shown to regulate the process of cell proliferation and apoptosis. Our previous studies show that mitsugumin 29 (MG29), a synaptophysin-related protein localized in the triad junction of skeletal muscle, serves an essential role in muscle Ca2+ signaling by regulating the process of store-operated Ca2+ entry. Here we report a functional interaction between MG29 and the ryanodine receptor (RyR)/Ca2+ release channel. The purified MG29 protein enhances activity of the RyR/Ca2+ release channel incorporated into the lipid bilayer membrane. Co-expression of MG29 and RyR in Chinese hamster ovary cells leads to apoptotic cell death resulting from depletion of intracellular Ca2+ stores, despite neither protein expression alone exhibits any significant effect on cell viability. In transient expression studies, the presence of RyR in the endoplasmic reticulum leads to retention of MG29 from the plasma membrane into the intracellular organelles. This functional interaction between MG29 and RyR could have important implications in the Ca2+ signaling processes of muscle cells. Our data also show that perturbation of intracellular Ca2+ homeostasis can serve as a key signal in the initiation of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号