首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human ether-à-go-go-related gene (hERG) K(+) channels have a critical role in cardiac repolarization. hERG channels close (deactivate) very slowly, and this is vital for regulating the time course and amplitude of repolarizing current during the cardiac action potential. Accelerated deactivation is one mechanism by which inherited mutations cause long QT syndrome and potentially lethal arrhythmias. hERG deactivation is highly dependent upon an intact EAG domain (the first 135 amino acids of the N terminus). Importantly, deletion of residues 2-26 accelerates deactivation to a similar extent as removing the entire EAG domain. These and other experiments suggest the first 26 residues (NT1-26) contain structural elements required to slow deactivation by stabilizing the open conformation of the pore. Residues 26-135 form a Per-Arnt-Sim domain, but a structure for NT1-26 has not been forthcoming, and little is known about its site of interaction on the channel. In this study, we present an NMR structure for the entire EAG domain, which reveals that NT1-26 is structurally independent from the Per-Arnt-Sim domain and contains a stable amphipathic helix with one face being positively charged. Mutagenesis and electrophysiological studies indicate that neutralizing basic residues and breaking the amphipathic helix dramatically accelerate deactivation. Furthermore, scanning mutagenesis and molecular modeling studies of the cyclic nucleotide binding domain suggest that negatively charged patches on its cytoplasmic surface form an interface with the NT1-26 domain. We propose a model in which NT1-26 obstructs gating motions of the cyclic nucleotide binding domain to allosterically stabilize the open conformation of the pore.  相似文献   

2.
3.
Mechanosensitive membrane channels in bacteria respond to the mechanical stretching of the membrane. They will open when bacteria are subjected to rapid osmotic down shock. MscS is a bacterial mechanosensitive channel of small conductance. It is a heptameric membrane protein whose transmembrane part, including the gate and its kinetics, has been well characterized. MscS has a large cytoplasmic domain of a cage-like shape that changes its conformation upon gating, but its involvement in gating is not understood. We screened MscS for mutations that cause potassium leak in Escherichia coli strains deficient in potassium transport systems. We did a phenotypic analysis of single and multiple mutants and recorded the single channel activities of some of them. After these analyses, we attributed the effects of a number of mutations to particular functional states of the channel. Our screen revealed that MscS leaks potassium in a desensitized and in an inactivated state. It also appeared that the lower part of TM3 (transmembrane, pore-forming helix) and the cytoplasmic β domain are tightly packed in the inactivated state but are dissociated in the open state. We attribute the TM3-β interaction to stabilization of the inactivated state in MscS and to the control of tight closure of its membrane pore.  相似文献   

4.
The human ether-a-go-go related gene (hERG) encodes the voltage-gated K(+) channel that underlies the rapidly activating delayed-rectifier current in cardiac myocytes. hERG is synthesized in the endoplasmic reticulum (ER) as an "immature" N-linked glycoprotein and is terminally glycosylated in the Golgi apparatus. Most hERG missense mutations linked to long QT syndrome type 2 (LQT2) reduce the terminal glycosylation and functional expression. We tested the hypothesis that a distinct pre-Golgi compartment negatively regulates the trafficking of some LQT2 mutations to the Golgi apparatus. We found that treating cells in nocodazole, a microtubule depolymerizing agent, altered the subcellular localization, functional expression, and glycosylation of the LQT2 mutation G601S-hERG differently from wild-type hERG (WT-hERG). G601S-hERG quickly redistributed to peripheral compartments that partially colocalized with KDEL (Lys-Asp-Glu-Leu) chaperones but not calnexin, Sec31, or the ER golgi intermediate compartment (ERGIC). Treating cells in E-4031, a drug that increases the functional expression of G601S-hERG, prevented the accumulation of G601S-hERG to the peripheral compartments and increased G601S-hERG colocalization with the ERGIC. Coexpressing the temperature-sensitive mutant G protein from vesicular stomatitis virus, a mutant N-linked glycoprotein that is retained in the ER, showed it was not restricted to the same peripheral compartments as G601S-hERG at nonpermissive temperatures. We conclude that the trafficking of G601S-hERG is negatively regulated by a microtubule-dependent compartment within the ER. Identifying mechanisms that prevent the sorting or promote the release of LQT2 channels from this compartment may represent a novel therapeutic strategy for LQT2.  相似文献   

5.
Hyperglycemia and hypoglycemia both can cause prolongation of the Q-T interval and ventricular arrhythmias. Here we studied modulation of human ether-à-go-go-related gene (HERG) K(+) channel, the major molecular component of delayed rectifier K(+) current responsible for cardiac repolarization, by glucose in HEK293 cells using whole-cell patch clamp techniques. We found that both hyperglycemia (extracellular glucose concentration [Glu](o) = 10 or 20 mm) and hypoglycemia ([Glu](o) = 2.5, 1, or 0 mm) impaired HERG function by reducing HERG current (I(HERG)) density, as compared with normoglycemia ([Glu](o) = 5 mm). Complete inhibition of glucose metabolism (glycolysis and oxidative phosphorylation) by 2-deoxy-d-glucose mimicked the effects of hypoglycemia, but inhibition of glycolysis or oxidative phosphorylation alone did not cause I(HERG) depression. Depletion of intracellular ATP mimicked the effects of hypoglycemia, and replacement of ATP by GTP or non-hydrolysable ATP failed to prevent the effects. Inhibition of oxidative phosphorylation by NaCN or application of antioxidants vitamin E or superoxide dismutase mimetic (Mn(III) tetrakis(4-benzoic acid) porphyrin chloride) abrogated and incubation with xanthine/xanthine oxidase mimicked the effects of hyperglycemia. Hyperglycemia or xanthine/xanthine oxidase markedly increased intracellular levels of reactive oxygen species, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H(2)DCFDA) fluorescence dye, and this increase was prevented by NaCN, vitamin E, or Mn(III) tetrakis(4-benzoic acid) porphyrin chloride. We conclude that ATP, derived from either glycolysis or oxidative phosphorylation, is critical for normal HERG function; depression of I(HERG) in hypoglycemia results from underproduction of ATP and in hyperglycemia from overproduction of reactive oxygen species. Impairment of HERG function might contribute to Q-T prolongation caused by hypoglycemia and hyperglycemia.  相似文献   

6.
In response to light, most retinal neurons exhibit gradual changes in membrane potential. Therefore K+ channels that mediate threshold currents are well-suited for the fine-tuning of signal transduction. In the present study we demonstrate the expression of the different Kv11 (ether-à-go-go related gene; erg) channel subunits in the human and mouse retina by RT PCR and quantitative PCR, respectively. Immunofluorescence analysis with cryosections of mouse retinae revealed the following local distribution of the three Kv11 subunits: Kv11.1 (m-erg1) displayed the most abundant expression with the strongest immunoreactivity in rod bipolar cells. In addition, immunoreactivity was found in the inner part of the outer plexiform layer (OPL), in the inner plexiform layer (IPL) and in the inner segments of photoreceptors. Immunoreactivity for Kv11.2 (m-erg2) was observed in the outer part of the OPL and throughout the IPL. Double-labeling for vGluT1 or synaptophysin indicated a mainly presynaptic localization of Kv11.2. While no significant staining for Kv11.3 (m-erg3) was detected in the neuronal retina, strong Kv11.3 immunoreactivity was present in the apical membrane of the retinal pigment epithelium. The different expression levels were confirmed by real-time PCR showing almost equal levels of Kv11.1 and Kv11.2, while Kv11.3 mRNA expression was significantly lower. The two main splice variants of Kv11.1, isoforms a and b were detected in comparable levels suggesting a possible formation of cGMP/cGK-sensitive Kv11.1 channels in photoreceptors and rod bipolar cells. Taken together, the immunohistological results revealed different expression patterns of the three Kv11 channels in the mouse retina supposing distinct physiological roles.  相似文献   

7.
Elementary K+ currents through isolated ATP-sensitive K+ channels from neonatal rat cardiocytes were recorded to study their temperature dependence between 9°C and 39°C. Elementary current size and, thus, K+ permeation through the open pore varied monotonically with temperature with a Q10 of 1.25 corresponding to a low activation energy of 3.9 kcal/mol. Open-state kinetics showed a complicated temperature dependence with Q10 values of up to 2.94. Arrhenius anomalies of open(1) and open(2) indicate the occurrence of thermallyinduced perturbations with a dominating influence on channel portions that are involved in gating but are obviously ineffective in altering pore-forming segments. At 39°C, open-state exit reactions were associated with the highest activation energy (O2 exit reaction: 12.1 kcal/ mol) and the largest amount of entropy. A transition from 19°C to 9°C elucidated a paradoxical kinetic response, shortening of both O-states, irrespective of the absence or presence of cAMP-dependent phosphorylation. Another member of the K+ channel family and also a constituent of neonatal rat cardiocyte membranes, 66 pS outwardly-rectifying channels, was found to react predictably since open increased on cooling. Obviously, cardiac K (ATP) + channels do not share this exceptional kinetic responsiveness to a temperature transition from 19°C to 9°C with other K+ channels and have a unique sensitivity to thermally-induced perturbations.  相似文献   

8.
The tandem P domain potassium channels, TREK1 and TASK1, are expressed throughout the brain but expression patterns do not significantly overlap. Since normal pO2 in central nervous tissue is as low as 20 mmHg and can decrease even further in ischemic disease, it is important that the behaviour of human brain ion channels is studied under conditions of acute and chronic hypoxia. This is especially true for brain-expressed tandem P-domain channels principally because they are important contributors to neuronal resting membrane potential and excitability. Here, we discuss some recent data derived from two recombinant tandem P-domain potassium channels, hTREK1 and hTASK1. Hypoxia represents a potent inhibitory influence on both channel types and occludes the activation by arachidonic acid, intracellular acidosis and membrane deformation of TREK1. This casts doubt on the idea that TREK1 activation during brain ischemia might facilitate neuroprotection via hyperpolarising neurons in which it is expressed. Interestingly, hypoxia is unable to regulate alkalotic inhibition of TREK1 suggesting that this channel may be more intimately involved in control of excitability during physiological or pathological alkalosis.  相似文献   

9.
Most cystic fibrosis (CF) cases are caused by the ΔF508 mutation in the CF transmembrane conductance regulator (CFTR), which disrupts both the processing and gating of this chloride channel. The cell surface expression of ΔF508-CFTR can be "rescued" by culturing cells at 26-28 °C and treating cells with small molecule correctors or intragenic suppressor mutations. Here, we determined whether these various rescue protocols induce a ΔF508-CFTR conformation that is thermally stable in excised membrane patches. We also tested the impact of constitutive cytosolic loop mutations that increase ATP-independent channel activity (K978C and K190C/K978C) on ΔF508-CFTR function. Low temperature-rescued ΔF508-CFTR channels irreversibly inactivated with a time constant of 5-6 min when excised patches were warmed from 22 °C to 36.5 °C. A panel of CFTR correctors and potentiators that increased ΔF508-CFTR maturation or channel activity failed to prevent this inactivation. Conversely, three suppressor mutations in the first nucleotide binding domain rescued ΔF508-CFTR maturation and stabilized channel activity at 36.5 °C. The constitutive loop mutations increased ATP-independent activity of low temperature-rescued ΔF508-CFTR but did not enhance protein maturation. Importantly, the ATP-independent activities of these ΔF508-CFTR constructs were stable at 36.5 °C, whereas their ATP-dependent activities were not. Single channel recordings of this thermally stable ATP-independent activity revealed dynamic gating and unitary currents of normal amplitudes. We conclude that: (i) ΔF508-CFTR gating is highly unstable at physiologic temperature; (ii) most rescue protocols do not prevent this thermal instability; and (iii) ATP-independent gating and the pore are spared from ΔF508-induced thermal instability, a finding that may inform alternative treatment strategies.  相似文献   

10.
11.
In Vitro Cellular & Developmental Biology - Plant - Plants have long played a major role in human health as a source of herbal remedies. Recently, transgenic plants have become convenient...  相似文献   

12.
Subtilisin DFE is a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4. The promoter and signal peptide-coding sequence of alpha-amylase gene from B. amyloliquefaciens was cloned and fused to the sequence coding for pro-peptide and mature peptide of subtilisin DFE. This hybrid gene was inserted into the Escherichia coli/Bacillus subtilis shuttle plasmid vector, pSUGV4. Recombinant subtilisin DFE gene was successfully expressed in B. subtilis WB600 with a fibrinolytic activity of 200 urokinase units ml(-1).  相似文献   

13.
14.
15.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

16.
17.
Copper is a trace element that is essential for the normal growth and development of all living organisms. In mammals, the ATP7A Cu-transporting ATPase is a key protein that is required for the maintenance of copper homeostasis. In both humans and mice, the ATP7A protein is coded by the X-linked ATP7A/Atp7a gene. Disturbances in copper metabolism caused by mutations in the ATP7A/Atp7a gene lead to severe metabolic syndromes Menkes disease in humans and the lethal mottled phenotype in mice. Mosaic is one of numerous mottled mutations and may serve as a model for a severe Menkes disease variant. In Menkes patients, mutations in the ATP7A gene often result in a decreased level of the normal ATP7A protein. The aim of this study was to analyse the expression of the Atp7a gene in mosaic mutants in early postnatal development, a critical period for starting copper supplementation therapy in both Menkes patients and mutant mice. Using real-time quantitative RT-PCR, we analysed the expression of the Atp7a gene in the brain, kidney and liver of newborn (P0.5) and suckling (P14) mice. Our results indicate that in mosaic P0.5 mutants, the Atp7a mRNA level is decreased in all analysed organs in comparison with wild-type animals. In two week-old mutants, a significant decrease was observed only in the kidney. In contrast, their hepatic level of Atp7a tended to be higher than in wild-type mice. We speculate that disturbance in the expression of the Atp7a gene and, consequently, change in the copper concentration of the organs, may contribute to the early fatal outcome of mosaic males.  相似文献   

18.
The chloroplast symbiosis between the ascoglossan (=Sacoglossa) sea slug Elysia chlorotica and plastids from the chromophytic alga Vaucheria litorea is the longest-lived relationship of its kind known, lasting up to 9 months. During this time, the plastids continue to photosynthesize in the absence of the algal nucleus at rates sufficient to meet the nutritional needs of the slugs. We have previously demonstrated that the synthesis of photosynthetic proteins occurs while the plastids reside within the diverticular cells of the slug. Here, we have identified several of these synthesized proteins as belonging to the nuclear-encoded family of polypeptides known as light-harvesting complex I (LHCI). The synthesis of LHCI is blocked by the cytosolic ribosomal inhibitor cycloheximide and proceeds in the presence of chloramphenicol, a plastid ribosome inhibitor, indicating that the gene encoding LHCI resides in the nuclear DNA of the slug. These results suggest that a horizontal transfer of the LHCI gene from the alga to the slug has taken place.  相似文献   

19.
Summary The hexokinase (HK) activity in human fibroblasts was close to that expected for a gene dosage effect in a mosaic cell line with about 86% trisomy 10 cells (64% greater than four control lines with normal karyotypes). There was no dosage effect for HK in the cell line that was trisomic for 10q24qter, nor in the cell line monosomic for 10pterp12. The data suggest an assignment of the HK1 locus (the only hexokinase in fibroblasts) to 10p11q23 by exclusion.  相似文献   

20.
The AU565 breast carcinoma cell line was used to determine the role of the extracellular-regulated kinase (ERK) pathway in mediating Heregulinβ1 (HRGβ1)-induced mammary cell differentiation. ERK activation remained elevated for 2 h following high doses of HRG which induce differentiation. In contrast, a transient 5 min peak of ERK activation in response to doses of HRG which induce proliferation was observed. A MEK specific inhibitor, PD98059, which inhibited activation of ERK in response to HRG, completely blocked HRG-induced differentiation and reversed cell growth arrest. To further assess the importance of sustained ERK activity in cellular differentiation, we transiently transfected a mutant constitutively active MEK1 construct into AU565 cells. Differentiation was induced in the absence of HRG and treatment with HRG potentiated this response. These data indicate that sustained activation of the MEK/ERK pathway is both essential and sufficient for HRG-induced differentiation of AU565 cells. J. Cell. Biochem. 70:587–595, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号