首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test whether hyperkalemia suppresses ventricular fibrillation (VF) by reducing the slope of the action potential duration (APD) restitution relation, we determined the effects of the extracellular K(+) concentration ([K(+)](o)) ([KCl] = 2.7-12 mM) on the restitution of APD and maximum upstroke velocity (V(max)) the magnitude of APD alternans and spatiotemporal organization during VF in isolated canine ventricle. As [KCl] was increased incrementally from 2.7 to 12 mM, V(max) was reduced progressively. Increasing [KCl] from 2.7 to 10 mM decreased the slope of the APD restitution relation at long, but not short, diastolic intervals (DI), decreased the range of DI over which the slope was >/=1, and reduced the maximum amplitude of APD alternans. At [KCl] = 12 mM, the range of DI over which the APD restitution slope was >/=1 increased, and the maximum amplitude of APD alternans increased. For [KCl] = 4-8 mM, the persistence of APD alternans at short DI was associated with maintenance of VF. For [KCl] = 10-12 mM, the spontaneous frequency during VF was reduced, and activation occurred predominantly at longer DI. The lack of APD alternans at longer DI was associated with conversion of VF to a periodic rhythm. These results provide additional evidence for the importance of APD restitution kinetics in the development of VF.  相似文献   

2.
Cellular electrophysiology experiments, important for understanding cardiac arrhythmia mechanisms, are usually performed with channels expressed in non myocytes, or with non-human myocytes. Differences between cell types and species affect results. Thus, an accurate model for the undiseased human ventricular action potential (AP) which reproduces a broad range of physiological behaviors is needed. Such a model requires extensive experimental data, but essential elements have been unavailable. Here, we develop a human ventricular AP model using new undiseased human ventricular data: Ca(2+) versus voltage dependent inactivation of L-type Ca(2+) current (I(CaL)); kinetics for the transient outward, rapid delayed rectifier (I(Kr)), Na(+)/Ca(2+) exchange (I(NaCa)), and inward rectifier currents; AP recordings at all physiological cycle lengths; and rate dependence and restitution of AP duration (APD) with and without a variety of specific channel blockers. Simulated APs reproduced the experimental AP morphology, APD rate dependence, and restitution. Using undiseased human mRNA and protein data, models for different transmural cell types were developed. Experiments for rate dependence of Ca(2+) (including peak and decay) and intracellular sodium ([Na(+)](i)) in undiseased human myocytes were quantitatively reproduced by the model. Early afterdepolarizations were induced by I(Kr) block during slow pacing, and AP and Ca(2+) alternans appeared at rates >200 bpm, as observed in the nonfailing human ventricle. Ca(2+)/calmodulin-dependent protein kinase II (CaMK) modulated rate dependence of Ca(2+) cycling. I(NaCa) linked Ca(2+) alternation to AP alternans. CaMK suppression or SERCA upregulation eliminated alternans. Steady state APD rate dependence was caused primarily by changes in [Na(+)](i), via its modulation of the electrogenic Na(+)/K(+) ATPase current. At fast pacing rates, late Na(+) current and I(CaL) were also contributors. APD shortening during restitution was primarily dependent on reduced late Na(+) and I(CaL) currents due to inactivation at short diastolic intervals, with additional contribution from elevated I(Kr) due to incomplete deactivation.  相似文献   

3.
Faber GM  Rudy Y 《Biophysical journal》2000,78(5):2392-2404
Sodium overload of cardiac cells can accompany various pathologies and induce fatal cardiac arrhythmias. We investigate effects of elevated intracellular sodium on the cardiac action potential (AP) and on intracellular calcium using the Luo-Rudy model of a mammalian ventricular myocyte. The results are: 1) During rapid pacing, AP duration (APD) shortens in two phases, a rapid phase without Na(+) accumulation and a slower phase that depends on [Na(+)](i). 2) The rapid APD shortening is due to incomplete deactivation (accumulation) of I(Ks). 3) The slow phase is due to increased repolarizing currents I(NaK) and reverse-mode I(NaCa), secondary to elevated [Na(+)](i). 4) Na(+)-overload slows the rate of AP depolarization, allowing time for greater I(Ca(L)) activation; it also enhances reverse-mode I(NaCa). The resulting increased Ca(2+) influx triggers a greater [Ca(2+)](i) transient. 5) Reverse-mode I(NaCa) alone can trigger Ca(2+) release in a voltage and [Na(+)](i)-dependent manner. 6) During I(NaK) block, Na(+) and Ca(2+) accumulate and APD shortens due to enhanced reverse-mode I(NaCa); contribution of I(K(Na)) to APD shortening is negligible. By slowing AP depolarization (hence velocity) and shortening APD, Na(+)-overload acts to enhance inducibility of reentrant arrhythmias. Shortened APD with elevated [Ca(2+)](i) (secondary to Na(+)-overload) also predisposes the myocardium to arrhythmogenic delayed afterdepolarizations.  相似文献   

4.
Unlike other excitation-contraction uncouplers, blebbistatin has few electrophysiological side effects and has gained increasing acceptance as an excitation-contraction uncoupler in optical mapping experiments. However, the possible role of blebbistatin in ventricular arrhythmia has hitherto been unknown. Furthermore, experiments with blebbistatin and 2,3-butanedione monoxime (BDM) offer an opportunity to assess the contribution of dynamic instability and wavelength of impulse propagation to the induction and maintenance of ventricular arrhythmia. Recordings of monophasic action potentials were used to assess effects of blebbistatin in Langendorff-perfused rabbit hearts (n = 5). Additionally, panoramic optical mapping experiments were conducted in rabbit hearts (n = 7) that were sequentially perfused with BDM, then washed out, and subsequently perfused with blebbistatin. The susceptibility to arrhythmia was investigated using a shock-on-T protocol. We found that 1) application of blebbistatin did not change action potential duration (APD) restitution; 2) in contrast to blebbistatin, BDM flattened APD restitution curve and reduced the wavelength; and 3) incidence of sustained arrhythmia was much lower under blebbistatin than under BDM (2/123 vs. 23/99). While arrhythmias under BDM were able to stabilize, the arrhythmias under blebbistatin were unstable and terminated spontaneously. In conclusion, the lower susceptibility to arrhythmia under blebbistatin than under BDM indicates that blebbistatin has less effects on arrhythmia dynamics. A steep restitution slope under blebbistatin is associated with higher dynamic instability, manifested by the higher incidence of not only wave breaks but also wave extinctions. This relatively high dynamic instability leads to the self-termination of arrhythmia because of the sufficiently long wavelength under blebbistatin.  相似文献   

5.
The most profound abnormalities during acute myocardial ischemia are extracellular K(+) accumulation ([K(+)](o)- upward arrow) and shortening of action potential duration or QT interval (APD- downward arrow or QT- downward arrow), which are pivotal in the genesis of ischemic arrhythmias and sudden cardiac death. The ionic mechanisms however remained obscured. We performed studies in a rabbit model of acute global myocardial ischemia in order to explore ionic and metabolic mechanisms for ischemic [K(+)](o)- upward arrow and QT- downward arrow. Exogenous 1-palmitoyl-lysophosphatidylcholine (LPC-16) mimicked the low-perfusion ischemia to produce significant [K(+)](o)- upward arrow and QT- downward arrow. The [K(+)](o)- upward arrow and QT- downward arrow induced by either LPC-16 or ischemia were prevented by dofetilide, a blocker of rapid delayed rectifier K(+) current (I(Kr)), but not by blockers for other K(+) channels. Consistently, dofetilide efficiently abolished the ventricular tachy-arrhythmias induced by ischemia or LPC-16. LPC-16 remarkably shortened APD and enhanced the function of I(Kr) and HERG (the pore-forming subunit of I(Kr)). The effects of LPC-16 manifested with shorter APD (faster repolarization rate) and at more negative potential (membrane repolarization). Dofetilide abolished the I(Kr)/HERG enhancing and APD shortening effects of LPC-16. Our results suggest that LPC-16 accumulation/HERG enhancement may be a link between metabolic trigger and ionic pathway for ischemic [K(+)](o)- upward arrow and QTc- downward arrow. This represents the first documentation of I(Kr)/HERG as the ionic mechanism in ischemic [K(+)](o)- upward arrow and QTc- downward arrow. Inhibition of LPC-16 production and accumulation and/or of I(Kr)/HERG may be a promising therapeutic strategy to attenuate the incidence of lethal arrhythmias associated with ischemic heart disease.  相似文献   

6.
Transgenic mice have been increasingly utilized to investigate the molecular mechanisms of cardiac arrhythmias, yet the rate dependence of the murine action potential duration and the electrical restitution curve (ERC) remain undefined. In the present study, 21 isolated, Langendorff-perfused, and atrioventricular node-ablated mouse hearts were studied. Left ventricular and left atrial action potentials were recorded using a validated miniaturized monophasic action potential probe. Murine action potentials (AP) were measured at 30, 50, 70, and 90% repolarization (APD(30)-APD(90)) during steady-state pacing and varied coupling intervals to determine ERCs. Murine APD showed rate adaptation as well as restitution properties. The ERC time course differed dramatically between early and late repolarization: APD(30) shortened with increasing S1-S2 intervals, whereas APD(90) was prolonged. When fitted with a monoexponential function, APD(30) reached plateau values significantly faster than APD(90) (tau = 29 +/- 2 vs. 78 +/- 6 ms, P < 0.01, n = 12). The slope of early APD(90) restitution was significantly <1 (0.16 +/- 0.02). Atrial myocardium had shorter final repolarization and significantly faster ERCs that were shifted leftward compared with ventricular myocardium. Recovery kinetics of intracellular Ca(2+) transients recorded from isolated ventricular myocytes at 37 degrees C (tau = 93 +/- 4 ms, n = 18) resembled the APD(90) ERC kinetics. We conclude that mouse myocardium shows AP cycle length dependence and electrical restitution properties that are surprisingly similar to those of larger mammals and humans.  相似文献   

7.
During intense exercise, efflux of K(+) from working muscles increases extracellular K(+) ([K(+)](o)) to levels that can compromise muscle excitability and hence cause fatigue. In this context, the reduction in the exercise-induced elevation of [K(+)](o) observed after training in humans is suggested to contribute to the increased performance after training. Although a similar effect could be obtained by an increase in the tolerance of muscle to elevated [K(+)](o), this possibility has not been investigated. To examine this, isolated soleus muscles from sedentary (sedentary) rats and from rats that had voluntarily covered 13.1 ± 0.7 km/day in an unloaded running wheel for 8 wk (active) were compared. In muscles from active rats, the loss of force induced by exposure to an elevated [K(+)](o) of 9 mM was 42% lower than in muscles from sedentary rats (P < 0.001). This apparent increase in K(+) tolerance in active rats was associated with an increased excitability as evident from a 33% reduction in the electrical current needed to excite individual muscle fibers (P < 0.0009). Moreover, muscles from active rats had lower Cl(-) conductance, higher maximal rate of rise of single-fiber action potentials (AP), and higher Na(+)/K(+) pump content. When stimulated intermittently at 6.5 mM K(+), muscles from active rats displayed better endurance than muscles from sedentary rats, whereas no difference was found when the muscles were stimulated continuously at 30 or 120 Hz. We conclude that voluntary running increases muscle excitability, leading to improved tolerance to elevated [K(+)](o).  相似文献   

8.
Spatial heterogeneity of repolarization can provide a substrate for reentry to occur in myocardium. This heterogeneity may result from spatial differences in action potential duration (APD) restitution. The restitution portrait (RP) measures many aspects of rate-dependent restitution: the dynamic restitution curve (RC), S1-S2 RC, and short-term memory response. We used the RP to characterize epicardial patterns of spatial heterogeneity of restitution that were repeatable across animals. New Zealand White rabbit ventricles were paced from the epicardial apex, midventricle, or base, and optical action potentials were recorded from the same three regions. A perturbed downsweep pacing protocol was applied that measured the RP over a range of cycle lengths from 1,000 to 140 ms. The time constant of short-term memory measured close to the stimulus was dependent on location. In the midventricle the mean time constant was 19.1 +/- 1.1 s, but it was 39% longer at the apex (P < 0.01) and 23% longer at the base (P = 0.03). The S1-S2 RC slope was dependent on pacing site (P = 0.015), with steeper slope when pacing from the apex than from the base. There were no significant repeatable spatial patterns in steady-state APD at all cycle lengths or in dynamic RC slope. These results indicate that transient patterns of epicardial heterogeneity of APD may occur after a change in pacing rate. Thus it may affect cardiac electrical stability at the onset of a tachycardia or during a series of ectopic beats. Differences in restitution with respect to pacing site suggest that vulnerability may be affected by the location of reentry or ectopic foci.  相似文献   

9.
Among the mechanisms proposed for the increase in discharge of sino-atrial node (SAN) by norepinephrine (NE) are an increase in the hyperpolarization-activated current I(f) and in the slow inward current I(Ca,L). If I(f) is the primary mechanism, cesium (a blocker of I(f)) should eliminate the positive chronotropic effect of NE. If I(Ca,L), is involved, [Ca(2+)](o) should condition NE effects. We studied the electrophysiological changes induced by NE in isolated guinea pig SAN superfused in vitro with Tyrode solution (both SAN dominant and subsidiary pacemaker mechanisms are present) as well as with high [K(+)](o), higher Cs(+) or Ba(2+) (only the dominant pacemaker mechanism is present). In Tyrode solution, NE (0.5-1microM) increased the SAN rate and adding Cs(+) (approximately 12 mM) caused a decaying voltage tail during diastole in subsidiary pacemakers. NE enhanced the Cs(+)-induced tail, and increased the rate but less than in Tyrode solution. In higher [Cs(+)](o) (15- 18 mM), Ba(2+) (1 mM) or Ba(2+) plus Cs(+) (10 mM) dominant action potentials (not followed by a tail) were present and NE accelerated them as in Tyrode solution. In high [K(+)](o), NE increased the rate in the absence and presence of Cs(+), Ba(2+) or Ba(2+) plus Cs(+). In these solutions, NE increased the overshoot and maximum diastolic potential of dominant action potentials (APs) and increased the rate by steepening diastolic depolarization and shifting the threshold for upstroke to more negative values. High [Ca(2+)](o) alone increased the rate and NE enhanced this action, whereas low [Ca(2+)](o) reduced or abolished the increase in rate by NE. In SAN quiescent in high [K(+)](o) plus indapamide, NE induced spontaneous discharge by decreasing the resting potential and initiating progressively larger voltage oscillations. Thus, NE increases the SAN rate by acting primarily on dominant APs in a manner consistent with an increase of I(Ca,L) and I(K) and under conditions where I(f) is either blocked or not activated. NE INITIATES spontaneous discharge by inducing voltage oscillations unrelated to I(f).  相似文献   

10.
The slope of the action potential duration (APD) restitution curve may be a significant determinant of the propensity to develop ventricular fibrillation, with steeper slopes associated with a more arrhythmogenic substrate. We hypothesized that one mechanism by which beta-blockers reduce sudden cardiac death is by flattening the APD restitution curve. Therefore, we investigated whether infusion of esmolol modulates the APD restitution curve in vivo. In 10 Yorkshire pigs, dynamic APD restitution curves were determined from measurements of APD at 90% repolarization with a monophasic action potential catheter positioned against the right ventricular septum during right ventricular apical pacing in the basal state and during infusion of esmolol. APD restitution curves were fitted to the three-parameter (a, b, c) exponential equation, APD = a.[1 - e((-b.DI))] + c, where DI is the diastolic interval. Esmolol decreased the maximal APD slope, 0.68 +/- 0.14 vs. 0.94 +/- 0.24 (baseline), P = 0.002, and flattened the APD restitution curve at shorter DIs, 75 and 100 ms (P < 0.05). To compare the slopes of the APD restitution curves at similar steady states, slopes were also computed at points of intersection between the restitution curve and the lines representing pacing at a fixed cycle length (CL) of 200, 225, 250, 275, and 300 ms using the relationship CL = APD + DI. Esmolol decreased APD restitution slopes at CLs 200-275 ms (P < 0.05). Esmolol flattens the cardiac APD restitution curve in vivo, particularly at shorter CLs and DIs. This may represent a novel mechanism by which beta-blockers prevent sudden cardiac death.  相似文献   

11.
Reductions in electrotonic loading around regions of structural and electrophysiological heterogeneity may facilitate capture of focal triggered activity, initiating reentrant arrhythmias. How electrotonic loading, refractoriness and capture of focal ectopics depend upon the intricate nature of physiological structural anatomy, as well as pathological tissue remodelling, however, is not well understood. In this study, we performed computational bidomain simulations with anatomically-detailed models representing the rabbit left ventricle. We used these models to quantify the relationship between local structural anatomy and spatial heterogeneity in action potential (AP) characteristics, electrotonic currents and effective refractory periods (ERPs) under pacing and restitution protocols. Regions surrounding vessel cavities, in addition to tissue surfaces, had significantly lower peak downstream electrotonic currents than well coupled myocardium ( vs A/cm2), with faster maximum AP upstroke velocities ( vs mV/ms), although noticeably very similar APDs ( vs ms) and AP restitution properties. Despite similarities in APDs, ERPs in regions of low electrotonic load in the vicinity of surfaces, intramural vessel cavities and endocardial structures were up to ms shorter compared to neighbouring well-coupled tissue, leading to regions of sharp ERP gradients. Consequently, focal extra-stimuli timed within this window of ERP heterogeneity between neighbouring regions readily induced uni-directional block, inducing reentry. Most effective induction sites were within channels of low ERPs between large vessels and epicardium. Significant differences in ERP driven by reductions in electrotonic loading due to fine-scale physiological structural heterogeneity provides an important mechanism of capture of focal activity and reentry induction. Application to pathological ventricles, particularly myocardial infarction, will have important implications in anti-arrhythmia therapy.  相似文献   

12.
Immunological stimulation of rat mucosal-type mast cells (RBL-2H3 line) by clustering of their Fcepsilon receptors (FcepsilonRI) causes a rapid and transient increase in free cytoplasmic Ca(2+) ion concentration ([Ca(2+)](i)) because of its release from intracellular stores. This is followed by a sustained elevated [Ca(2+)](i), which is attained by Ca(2+) influx. Because an FcepsilonRI-induced increase in the membrane permeability for Na(+) ions has also been observed, and secretion is at least partially inhibited by lowering of extracellular sodium ion concentrations ([Na(+)](o)), the operation of a Na(+)/Ca(2+) exchanger has been considered. We found significant coupling between the Ca(2+) and Na(+) ion gradients across plasma membranes of RBL-2H3 cells, which we investigated employing (23)Na-NMR, (45)Ca(2+), (85)Sr(2+), and the Ca(2+)-sensitive fluorescent probe indo-1. The reduction in extracellular Ca(2+) concentrations ([Ca(2+)](o)) provoked a [Na(+)](i) increase, and a decrease in [Na(+)](o) results in a Ca(2+) influx as well as an increase in [Ca(2+)](i). Mediator secretion assays, monitoring the released beta-hexosaminidase activity, showed in the presence of extracellular sodium a sigmoidal dependence on [Ca(2+)](o). However, the secretion was not affected by varying [Ca(2+)](o) as [Na(+)](o) was lowered to 0.4 mM, while it was almost completely inhibited at [Na(+)](o) = 136 mM and [Ca(2+)](o) < 0.05 mM. Increasing [Na(+)](o) caused the secretion to reach a minimum at [Na(+)](o) = 20 mM, followed by a steady increase to its maximum value at 136 mM. A parallel [Na(+)](o) dependence of the Ca(2+) fluxes was observed: Antigen stimulation at [Na(+)](o) = 136 mM caused a pronounced Ca(2+) influx. At [Na(+)](o) = 17 mM only a slight Ca(2+) efflux was detected, whereas at [Na(+)](o) = 0.4 mM no Ca(2+) transport across the cell membrane could be observed. Our results clearly indicate that the [Na(+)](o) dependence of the secretory response to FcepsilonRI stimulation is due to its influence on the [Ca(2+)](i), which is mediated by a Na(+)-dependent Ca(2+) transport.  相似文献   

13.
We examine the utility of the action potential (AP) duration (APD) restitution curve slope in predicting the onset of electrical alternans when electrotonic and memory effects are considered. We develop and use two ionic cell models without memory that have the same restitution curve with slope >1 but different AP shapes and, therefore, different electrotonic effects. We also study a third cell model that incorporates short-term memory of previous cycle lengths, so that it has a family of S1-S2 restitution curves as well as a dynamic restitution curve with slope >1. Our results indicate that both electrotonic and memory effects can suppress alternans, even when the APD restitution curve is steep. In the absence of memory, electrotonic currents related to the shape of the AP, as well as conduction velocity restitution, can affect how alternans develops in tissue and, in some cases, can prevent its induction entirely, even when isolated cells exhibit alternans. When short-term memory is included, alternans may not occur in isolated cells, despite a steep APD restitution curve, and may or may not occur in tissue, depending on conduction velocity restitution. We show for the first time that electrotonic and memory effects can prevent conduction blocks and stabilize reentrant waves in two and three dimensions. Thus we find that the slope of the APD restitution curve alone does not always well predict the onset of alternans and that incorporating electrotonic and memory effects may provide a more useful alternans criterion.  相似文献   

14.
We investigated whether in the sinoatrial node (SAN) there are two different pacemaker mechanisms and whether either one can maintain spontaneous discharge. These questions were studied by means of an electrophysiological technique and of blockers of different diastolic currents in rabbit and guinea pig isolated SAN. In SAN subsidiary pacemakers of both species, Cs(+) (5-10 mM) or high [K(+)](o) (10-12 mM) decreased the maximum diastolic potential, abolished diastolic depolarization (DD) at polarized levels (subsidiary DD), unmasked a U-shaped dominant DD at depolarized levels, but did not stop the SAN. In rabbit SAN, E4031 (1 microM) and d-sotalol (100 microM) did not stop discharge, but did so after block of subsidiary DD by high [K(+)](o) or Cs(+). In guinea pig SAN, in Tyrode solution E4031, d-sotalol or indapamide (100 microM) did not stop SAN discharge. In the presence of Cs(+) or high [K(+)](o) indapamide (but not E4031 or d-sotalol) stopped the SAN. Ba(2+) (1-5 mM) led to stoppage of discharge both in Tyrode solution and in high [K(+)](o) or Cs(+). Depolarization by blockers of DD unmasked sinusoidal fluctuations, which during recovery were responsible for resumption of discharge. We conclude that in rabbit and guinea pig SAN, two different pacemaker mechanisms (Cs(+)- and K(+)-sensitive subsidiary DD, and Cs(+)- and K(+)-insensitive dominant DD) can independently sustain discharge, but block of both mechanisms leads to quiescence. Abolition of dominant DD by blockers of I(K) is consistent with a decay of I(K) as the dominant pacemaking mechanism, I(Kr) being more important in rabbit and I(Ks) in guinea pig. Sinusoidal fluctuations appear to be an essential component of the pacemaking process.  相似文献   

15.
Intense exercise causes a large loss of K(+) from contracting muscles. The ensuing elevation of extracellular K(+) ([K(+)](o)) has been suggested to cause fatigue by depressing muscle fiber excitability. In isolated muscles, however, repeated contractions confer some protection against this effect of elevated K(+). We hypothesize that this excitation-induced force-recovery is related to the release of the neuropeptide calcitonin gene-related peptide (CGRP), which stimulates the muscular Na(+)-K(+) pumps. Using the specific CGRP antagonist CGRP-(8-37), we evaluated the role of CGRP in the excitation-induced force recovery and examined possible mechanisms. Intact rat soleus muscles were stimulated to evoke short tetani at regular intervals. Increasing extracellular K(+) ([K(+)](o)) from 4 to 11 mM decreased force to approximately 20% of initial force (P < 0.001). Addition of exogenous CGRP (10(-9) M), release of endogenous CGRP with capsaicin, or repeated electrical stimulation recovered force to 50-70% of initial force (P < 0.001). In all cases, force recovery could be almost completely suppressed by CGRP-(8-37). At 11 mM [K(+)](o), CGRP (10(-8) M) did not alter resting membrane potential or conductance but significantly improved action potentials (P < 0.001) and increased the proportion of excitable fibers from 32 to 70% (P < 0.001). CGRP was shown to induce substantial force recovery with only modest Na(+)-K(+) pump stimulation. We conclude that the excitation-induced force recovery is caused by a recovery of excitability, induced by local release of CGRP. The data suggest that the recovery of excitability partly was induced by Na(+)-K(+) pump stimulation and partly by altering Na(+) channel function.  相似文献   

16.
Steep action potential duration (APD) restitution slopes (>1) and spatial APD restitution heterogeneity provide the substrate for ventricular fibrillation in computational models and experimental studies. Their relationship to ventricular arrhythmia vulnerability in human cardiomyopathy has not been defined. Patients with cardiomyopathy [left ventricular (LV) ejection fraction <40%] and no history of ventricular arrhythmias underwent risk stratification with programmed electrical stimulation or T wave alternans (TWA). Low-risk patients (n = 10) had no inducible ventricular tachycardia (VT) or negative TWA, while high-risk patients (n = 8) had inducible VT or positive TWA. Activation recovery interval (ARI) restitution slopes were measured simultaneously from 10 right ventricular (RV) endocardial sites during an S1-S2 pacing protocol. ARI restitution slope heterogeneity was defined as the coefficient of variation of slopes. Mean ARI restitution slope was significantly steeper in the high-risk group compared with the low-risk group [1.16 (SD 0.31) vs. 0.59 (SD 0.19), P = 0.0002]. The proportion of endocardial recording sites with a slope >1 was significantly larger in the high-risk patients [47% (SD 35) vs. 13% (SD 21), P = 0.022]. Spatial heterogeneity of ARI restitution slopes was similar between the two groups [29% (SD 16) vs. 39% (SD 34), P = 0.48]. There was an inverse linear relationship between the ARI restitution slope and the minimum diastolic interval (P < 0.001). In cardiomyopathic patients at high risk of ventricular arrhythmias, ARI restitution slopes along the RV endocardium are steeper, but restitution slope heterogeneity is similar compared with those at low risk. Steeper ARI restitution slopes may increase the propensity for ventricular arrhythmias in patients with impaired left ventricular function.  相似文献   

17.
Patients with Andersen-Tawil syndrome (ATS) mostly have mutations on the KCNJ2 gene, producing loss of function or dominant-negative suppression of the inward rectifier K(+) channel Kir2.1. However, clinical manifestations of ATS including dysmorphic features, periodic paralysis (hypo-, hyper-, or normokalemic), long QT, and ventricular arrhythmias (VAs) are considerably variable. Using a modified dynamic Luo-Rudy simulation model of cardiac ventricular myocytes, we attempted to elucidate mechanisms of VA in ATS by analyzing effects of the inward rectifier K(+) channel current (I(K1)) on the action potential (AP). During pacing at 1.0 Hz with extracellular K(+) concentration ([K(+)](o)) at 4.5 mM, a stepwise 10% reduction of Kir2.1 channel conductance progressively prolonged the terminal repolarization phase of the AP along with gradual depolarization of the resting membrane potential (RMP). At 90% reduction, early afterdepolarizations (EADs) became inducible and RMP was depolarized to -52.0 mV (control: -89.8 mV), followed by emergence of spontaneous APs. Both EADs and spontaneous APs were facilitated by a decrease in [K(+)](o) and suppressed by an increase in [K(+)](o). Simulated beta-adrenergic stimulation enhanced delayed afterdepolarizations (DADs) and could also facilitate EADs as well as spontaneous APs in the setting of low [K(+)](o) and reduced Kir2.1 channel conductance. In conclusion, the spectrum of VAs in ATS may include 1) triggered activity mediated by EADs and/or DADs and 2) abnormal automaticity manifested as spontaneous APs. These VAs can be aggravated by a decrease in [K(+)](o) and beta-adrenergic stimulation and may potentially induce torsade de pointes and cause sudden death. In patients with ATS, the hypokalemic form of periodic paralysis should have the highest propensity to VAs, especially during physical activity.  相似文献   

18.
Cardiomyocyte contractility is regulated by the extracellular K(+) concentration ([K(+)](o)). Potassium dynamics in the T tubules during the excitation-contraction cycle depends on the diffusion rate of K(+), but this rate is not known. Detubulation of rat cardiomyocytes was induced by osmotic shock using formamide, which separated the surface membrane from the T tubules. Changes in current and membrane potential in voltage-clamped (-80 mV) and current-clamped control and detubulated cardiomyocytes were compared during rapid switches between 5.4 and 8.1 mM [K(+)](o), and the results were simulated in a mathematical model. In the voltage-clamp experiments, the current changed significantly slower in control than in detubulated cardiomyocytes during the switch from 5.4 to 8.1 mM [K(+)](o), as indicated by the times to achieve 25, 50, 90, and 95% of the new steady-state current [control (ms) t(25) = 98 +/- 12, t(50) = 206 +/- 20, t(90) = 570 +/- 72, t(95) = 666 +/- 92; detubulated t(25) = 61 +/- 11, t(50) = 142 +/- 17, t(90) = 352 +/- 52, t(95) = 420 +/- 69]. These time points were not significantly different either during the 8.1 to 5.4 mM [K(+)](o) switch or in current-clamped cardiomyocytes switching from 5.4 to 8.1 mM [K(+)](o). Mathematical simulation of the difference current between control and detubulated cardiomyocytes gave a t-tubular diffusion rate for K(+) of approximately 85 mum(2)/s. We conclude that the diffusion of K(+) in the T tubules is so slow that they constitute a functional compartment. This might play a key role in local regulation of the action potential, and thus in the regulation of cardiomyocyte contractility.  相似文献   

19.
Ionically based cardiac action potential (AP) models are based on equations with singular Jacobians and display time-dependent AP and ionic changes (transients), which may be due to this mathematical limitation. The present study evaluated transients during long-term simulated activity in a mathematical model of the canine atrial AP. Stimulus current assignment to a specific ionic species contributed to stability. Ionic concentrations were least disturbed with the K(+) stimulus current. All parameters stabilized within 6-7 h. Inward rectifier, Na(+)/Ca(2+) exchanger, L-type Ca(2+), and Na(+)-Cl(-) cotransporter currents made the greatest contributions to stabilization of intracellular [K(+)], [Na(+)], [Ca(2+)], and [Cl(-)], respectively. Time-dependent AP shortening was largely due to the outward shift of Na(+)/Ca(2+) exchange related to intracellular Na(+) (Na) accumulation. AP duration (APD) reached a steady state after approximately 40 min. AP transients also occurred in canine atrial preparations, with the APD decreasing by approximately 10 ms over 35 min, compared with approximately 27 ms in the model. We conclude that model APD and ionic transients stabilize with the appropriate stimulus current assignment and that the mathematical limitation of equation singularity does not preclude meaningful long-term simulations. The model agrees qualitatively with experimental observations, but quantitative discrepancies highlight limitations of long-term model simulations.  相似文献   

20.
The focal source hypothesis of ventricular fibrillation (VF) posits that rapid activation from a focal source, rather than action potential duration (APD) restitution properties, is responsible for the maintenance of VF. We injected aconitine (100 microg) into normal isolated perfused swine right ventricles (RVs) stained with 4-[beta-[2-(di-n-butylamino)-6-naphthyl]vinyl]pyridinium (di-4-ANEPPS) for optical mapping studies. Within 97 +/- 163 s, aconitine induced ventricular tachycardia (VT) with a mean cycle length 268 +/- 37 ms, which accelerated before converting to VF. Drugs that flatten the APD restitution slope, including diacetyl monoxime (10-20 mM, n = 6), bretylium (10-20 microg/ml, n = 3), and verapamil (2-4 microg/ml, n = 3), reversibly converted VF to VT in all cases. In two RVs, VF persisted despite of the excision of the aconitine site. Simulations in two-dimensional cardiac tissue showed that once VF was initiated, it remained sustained even after the "aconitine" site was eliminated. In this model of focal source VF, the VT-to-VF transition occurred due to a wave break outside the aconitine site, and drugs that flattened the APD restitution slope converted VF to VT despite continuous activation from aconitine site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号