首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

2.
The ability of Plasmodium falciparum-infected red blood cells (IRBCs) to bind to vascular endothelium, thus enabling sequestration in vital host organs, is an important pathogenic mechanism in malaria. Adhesion of P. falciparum IRBCs to platelets, which results in the formation of IRBC clumps, is another cytoadherence phenomenon that is associated with severe disease. Here, we have used in vitro cytoadherence assays to demonstrate, to our knowledge for the first time, that P. falciparum IRBCs use the 32-kDa human protein gC1qR/HABP1/p32 as a receptor to bind to human brain microvascular endothelial cells. In addition, we show that P. falciparum IRBCs can also bind to gC1qR/HABP1/p32 on platelets to form clumps. Our study has thus identified a novel host receptor that is used for both adhesion to vascular endothelium and platelet-mediated clumping. Given the association of adhesion to vascular endothelium and platelet-mediated clumping with severe disease, adhesion to gC1qR/HABP1/p32 by P. falciparum IRBCs may play an important role in malaria pathogenesis.  相似文献   

3.
Since insulin receptors and their downstream signaling molecules are organized in lipid rafts, proteomic analysis of adipocyte lipid rafts may provide new insights into the function of lipid rafts in adipogenesis and insulin signaling. To search for proteins involved in adipocyte differentiation and insulin signaling, we analyzed detergent‐resistant lipid raft proteins from 3T3‐L1 preadipocytes and adipocytes by 2‐DE. Eleven raft proteins were identified from adipocytes. One of the adipocyte‐specific proteins was globular C1q receptor (gC1qR), an acidic 32 kDa protein known as the receptor for the globular domain of complement C1q. The targeting of gC1qR into lipid rafts was significantly increased during adipogenesis, as determined by immunoblotting and immunofluorescence. Since the silencing of gC1qR by small RNA interference abolished adipogenesis and blocked insulin‐induced activation of insulin receptor, insulin receptor substrate‐1 (IRS‐1), Akt, and Erk1/2, we can conclude that gC1qR is an essential molecule involved in adipogenesis and insulin signaling.  相似文献   

4.
Matrix metalloproteinases (MMPs) including membrane type 1 MMP (MT1-MMP) can degrade extracellular matrix and cell surface receptor molecules and have an essential function in malignancy. Recently, we established a functional link between MT1-MMP and the receptor of complement component 1q (gC1qR). The gC1qR is known as a compartment-specific regulator of diverse cellular and viral proteins. Once released by proliferating cells, soluble gC1qR may inhibit complement component 1q hemolytic activity and play important roles in vivo in assisting tumor cells to evade destruction by complement. Here, we report that gC1qR is susceptible to MT1-MMP proteolysis in vitro and in cell cultures. The major MT1-MMP cleavage site (Gly(79) down arrow Gln(80)) is localized within the structurally disordered loop connecting the beta(3) and the beta(4) strands of gC1qR. The recombinant MT1-MMP construct that included the catalytic domain but lacked the hemopexin-like domain lost the proteolytic capacity; however, it retained the ability to bind gC1qR. Inhibition of MT1-MMP activity by a hydroxamate inhibitor converted the protease into a cell surface receptor of gC1qR and promoted co-precipitation MT1-MMP with the soluble gC1qR protein. It is tempting to hypothesize that these novel mechanisms may play important roles in vivo and have to be taken into account in designing hydroxamate-based cancer therapy.  相似文献   

5.
The effect of ethanol on insulin-like growth factor-1 (IGF-I)-mediated signal transduction and functional activation in neuronal cells was examined. In human SH-SY5Y neuroblastoma cells, ethanol inhibited tyrosine autophosphorylation of the IGF-I receptor. This corresponded to the inhibition of IGF-I-induced phosphorylation of p42/p44 mitogen-activated/extracellular signal-regulated protein kinase (MAPK) by ethanol. Insulin-related substrate-2 (IRS-2) and focal adhesion kinase phosphorylation were reduced in the presence of ethanol, which corresponded to the prevention of lamellipodia formation (30 min). By contrast, ethanol had no effect on Shc phosphorylation when measured up to 1 h, and did not affect the association of Grb-2 with Shc. Neurite formation at 24 h was similarly unaffected by ethanol. The data indicate that the IGF-I receptor is a target for ethanol in SH-SY5Y cells However, there is diversity in the sensitivity of signaling elements within the IGF-I receptor tyrosine kinase signaling cascades to ethanol, which can be related to the inhibition of specific functional events in neuronal activation.  相似文献   

6.
Rac activation in neuronal cells plays an important role in lamellipodia formation that is a critical event for neuritogenesis. It is well known that the Rac activity is regulated via activation of phosphatidylinositol 3-kinase (PI3K) by a variety of receptor tyrosine kinases. Here we show that increased serine phosphorylation on RET receptor tyrosine kinase following cAMP elevation promotes lamellipodia formation of neuronal cells induced by glial cell line-derived neurotrophic factor (GDNF). We identified serine 696 in RET as a putative phosphorylation site by protein kinase A and found that mutation of this serine almost completely inhibited lamellipodia formation by GDNF without affecting activation of the PI3K/AKT signaling pathway. Mutation of tyrosine 1062 in RET, whose phosphorylation is crucial for activation of PI3K, also inhibited lamellipodia formation by GDNF. Inhibition of lamellipodia formation by mutation of either serine 696 or tyrosine 1062 was associated with decrease of the Rac1-guanine nucleotide exchange factor (GEF) activity, suggesting that this activity is regulated by two different signaling pathways via serine 696 and tyrosine 1062 in RET. Moreover, in the presence of serine 696 mutation, lamellipodia formation was rescued by replacing tyrosine 687 with phenylalanine. These findings propose a novel mechanism that receptor tyrosine kinase modulates actin dynamics in neuronal cells via its cAMP-dependent phosphorylation.  相似文献   

7.
Insulin can regulate the abundance and organization of filamentous actin within cells in culture. Early studies using cell lines that overexpress the insulin receptor demonstrated that insulin caused a rapid reversible disassembly of actin filaments that coincided with the rapid tyrosine dephosphorylation of focal adhesion kinase. We have extended these studies by demonstrating that paxillin, another focal adhesion protein, and Src undergo tyrosine dephosphorylation in response to insulin in Chinese hamster ovary (CHO) and rat hepatoma (HTC) cells that overexpress the insulin receptor. This contrasted with the effect of insulin in parental CHO and HTC cells in which focal adhesion proteins were not dephosphorylated in response to the hormone. In addition, insulin caused a dispersion of focal adhesion proteins and disruption of actin filament bundles only in cells that overexpressed the insulin receptor. Moreover, in 3T3-L1 adipocytes, which are considered prototypic insulin-responsive cells, actin filament assembly was stimulated, and focal adhesion protein tyrosine phosphorylation was not altered. 3T3-L1 cells have more insulin receptors than either parental CHO or HTC cells but have fivefold less insulin receptors than the overexpressing cell lines. We hypothesize that a threshold may exist in which the overexpression of insulin receptors determines how insulin signaling pathways regulate the actin cytoskeleton.  相似文献   

8.
《Cellular signalling》2014,26(6):1258-1268
The class III phosphatidylinositol 3-kinase, VPS34, phosphorylates the D3 hydroxyl of inositol generating phosphatidylinositol 3-phosphate (ptdins(3)p) . Initial studies suggested that ptdins(3)p solely functioned as a component of vesicular and endosomal membranes and that VPS34 did not function in signal transduction. However, VPS34 has recently been shown to be required for insulin-mediated activation of S6 kinase 1 (S6K1). Whether VPS34 activity is directly regulated by insulin is unclear. It is also not known whether VPS34 activity can be spatially restricted in response to extracellular stimuli. Data presented here demonstrate that in response to insulin, VPS34 is activated and translocated to lamellipodia where it produces ptdins(3)p. The localized production of ptdins(3)p is dependent on Src phosphorylation of VPS34. In cells expressing VPS34 with mutations at Y231 or Y310, which are Src-phosphorylation sites, insulin-stimulated VPS34 translocation to the plasma membrane and lamellipodia formation are blocked. mTOR also colocalizes with VPS34 and ptdins(3)p at lamellipodia following insulin-stimulation. In cells expressing the VPS34-Y231F mutant, which blocks lamellipodia formation, mTOR localization at the plasma membrane and insulin-mediated S6K1 activation are reduced. This suggests that mTOR localization at lamellipodia is important for full activation of S6K1 induced by insulin. These data demonstrate that insulin can spatially regulate VPS34 activity through Src-mediated tyrosine phosphorylation and that this membrane localized activity contributes to lamellipodia formation and activation of mTOR/S6K1signaling.  相似文献   

9.
Syk protein tyrosine kinase is essential for immune system development and function [1]and for the maintenance of vascular integrity [2,3]. In leukocytes, Syk is activated by binding to diphosphorylated immune receptor tyrosine-based activation motifs (pITAMs)[1]. Syk can also be activated by integrin adhesion receptors [4,5], but the mechanism of its activation is unknown. Here we report a novel mechanism for Syk's recruitment and activation, which requires that Syk bind to the integrin beta3 cytoplasmic tail. We found that both Syk and the related kinase ZAP-70 bound the beta3 cytoplasmic tail through their tandem SH2 domains. However, unlike Syk binding to pITAMs, this interaction was independent of tyrosine phosphorylation and of the phosphotyrosine binding function of Syk's tandem SH2 domains. Deletion of the four C-terminal residues of the beta3 cytoplasmic tail [beta3(759X)] decreased Syk binding and disrupted its physical association with integrin alphaIIbbeta3. Furthermore, cells expressing alphaIIbbeta3(759X) failed to exhibit Syk activation or lamellipodia formation upon cell adhesion to the alphaIIbbeta3 ligand, fibrinogen. In contrast, FAK phosphorylation and focal adhesion formation were unimpaired by this mutation. Thus, the direct binding of Syk kinase to the integrin beta3 cytoplasmic tail is a novel and functionally significant mechanism for the regulation of this important non-receptor tyrosine kinase.  相似文献   

10.
Complement plays a pivotal role in the regulation of innate and adaptive immunity. It has been shown that the binding of C1q, a natural ligand of gC1qR, on T cells inhibits their proliferation. Here, we demonstrate that direct binding of the hepatitis C virus (HCV) core to gC1qR on T cells leads to impaired Lck/Akt activation and T-cell function. The HCV core associates with the surface of T cells specifically via gC1qR, as this binding is inhibited by the addition of either anti-gC1qR antibody or soluble gC1qR. The binding affinity constant of core protein for gC1qR, as determined by BIAcore analysis, is 3.8 x 10(-7) M. The specificity of the HCV core-gC1qR interaction is confirmed by reduced core binding on Molt-4 T cells treated with gC1qR-silencing small interfering RNA and enhanced core binding on GPC-16 guinea pig cells transfected with human gC1qR. Interestingly, gC1qR is expressed at higher levels on CD8(+) than on CD4(+) T cells, resulting in more severe core-induced suppression of the CD8(+)-T-cell population. Importantly, T-cell receptor-mediated activation of the Src kinases Lck and ZAP-70 but not Fyn and the phosphorylation of Akt are impaired by the HCV core, suggesting that it inhibits the very early events of T-cell activation.  相似文献   

11.
Both epidermal growth factor (EGF) and the extracellular matrix components have been implicated in the pathobiology of adenocarcinomas by somewhat poorly understood mechanisms. We have addressed this problem using an in vitro model comprising the colon adenocarcinoma cell line HT29-D4, wherein the role of EGF and type IV collagen on cell adhesion was examined. We demonstrated that the effect of EGF on HT29-D4 cell adhesion was regulated by type IV collagen in a time- and dose-dependent manner. The incorporation of a panel of monoclonal antibodies to integrins alpha1beta1, alpha2beta1 and alpha3beta1 in adhesion medium revealed that EGF-mediated increase in the cell adhesion was mediated essentially by alpha2beta1, and the use of flow cytometry led us to conclude that this EGF effect was mediated by an increase in alpha2beta1 activation and not by an increase in cell surface expression of integrin. An indirect immunofluorescence technique was employed to demonstrate that focal adhesion kinase (FAK) and alpha2beta1 integrin were present in focal complexes in large EGF-induced lamellipodia whereas actin cytoskeleton was organised in small tips that colocalised with FAK. This pattern was observed at early time points (15 min) with a strong FAK tyrosine phosphorylation and with an increase in mitogen-activated protein kinase activity (5-15 min) as measured by immunoprecipitation and immunoblotting. We conclude that at early time points of cell adhesion and spreading, EGF exerted an inside-out regulation of alpha2beta1 integrin in HT29-D4 cells. This regulation seemed to be mediated by EGF-dependent FAK phosphorylation entailing an increase in integrin activation and their recruitment in numerous focal complexes. Furthermore after activation, FAK induced aggregation of actin-associated proteins (paxillin, vinculin and other tyrosine phosphorylated proteins) in focal complexes, leading to organisation of actin cytoskeleton that is involved in lamellipodia formation. Finally, activated alpha2beta1 integrins intervened in all these processes clustered in small focal complexes but not in focal adhesions.  相似文献   

12.
gC1qR, a complement receptor for C1q, plays a pivotal role in the regulation of inflammatory and antiviral T cell responses. Several pathogens, including hepatitis C virus, exploit gC1qR-dependent regulatory pathways to manipulate host immunity. However, the molecular mechanism(s) of gC1qR signaling involved in regulating inflammatory responses remains unknown. We report the selective inhibition of TLR4-induced IL-12 production after cross-linking of gC1qR on the surface of macrophages and dendritic cells. Suppression of IL-12 did not result from increased IL-10 or TGF-beta, but was dependent on PI3K activation. Activation of PI3K and subsequent phosphorylation of Akt define an intracellular pathway mediating gC1qR signaling and cross-talk with TLR4 signaling. This is the first report to identify signaling pathways used by gC1qR-mediated immune suppression, and it establishes a means of complement-mediated immune suppression to inhibit Th1 immunity crucial for clearing pathogenic infection.  相似文献   

13.
Evidence is increasing that complement components might play a role in fertilization. C1q, the first component of the classical complement cascade, has the ability to promote sperm agglutination in a capacitation-dependent manner as well as an effect on sperm-oolemma binding and fusion. We have previously detected gC1qR, the receptor for the globular head portion of C1q, on the surface of capacitated sperm. In this study, we examined the expression of gC1qR in both fresh and capacitated human spermatozoa. We performed immunoprecipitation for gC1qR and analyzed biotinylated sperm membrane by Western blot to illustrate an increase in receptor density after overnight capacitation. These results were confirmed by flow cytometric analysis of spermatozoa using fluorescein isothiocyanate-labeled monoclonal anti-gC1qR antibody. Confocal, indirect immunofluorescence microscopy revealed an increase in receptor expression over the rostral portion of the sperm head after capacitation. In addition, the ability of live spermatozoa to bind to monoclonal anti-gC1qR antibody-coated microtiter wells was also increased after capacitation. These results suggest that gC1qR may play a role in human fertilization.  相似文献   

14.
Collagen plays a critical role in hemostasis by promoting adhesion and activation of platelets at sites of vessel injury. In the present model of platelet-collagen interaction, adhesion is mediated via the inside-out regulation of integrin alpha2beta1 and activation through the glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex. The present study extends this model by demonstrating that engagement of alpha2beta1 by an integrin-specific sequence from within collagen or by collagen itself generates tyrosine kinase-based intracellular signals that lead to formation of filopodia and lamellipodia in the absence of the GPVI-FcR gamma-chain complex. The same events do not occur in platelet suspensions. alpha2beta1 activation of adherent platelets stimulates tyrosine phosphorylation of many of the proteins in the GPVI-FcR gamma-chain cascade, including Src, Syk, SLP-76, and PLCgamma2 as well as plasma membrane calcium ATPase and focal adhesion kinase. alpha2beta1-mediated spreading is dramatically inhibited in the presence of the Src kinase inhibitor PP2 and in PLCgamma2-deficient platelets. Spreading is abolished by chelation of intracellular Ca2+. Demonstration that adhesion of platelets to collagen via alpha2beta1 generates intracellular signals provides a new insight into the mechanisms that control thrombus formation and may explain the unstable nature of beta1-deficient thrombi and why loss of the GPVI-FcR gamma-chain complex has a relatively minor effect on bleeding.  相似文献   

15.
16.
InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.  相似文献   

17.
Akt, also called PKB, is a serine/threonine kinase that plays a major role in cell survival. It can be activated by several cellular receptors, including integrins and growth factor receptors, in PI3K-dependent manners. In this study, we analyzed the two current models for Akt activation upon beta1 integrin-mediated adhesion: via focal adhesion kinase and via transactivation of the EGF receptor. Distinct differences in the pathways leading to phosphorylation and activation of Akt from stimulated beta1 integrins and EGF receptor were observed, including opposing sensitivity to the tyrosine kinase inhibitors PP2 and Gefitinib. Using knockout cells and integrin mutant cells, we show that beta1 integrins can induce phosphorylation of Akt at Ser473 and Thr308 and Akt kinase activity independently of the EGF receptor activity, focal adhesion kinase, and the Src family members. In contrast to stimulation with EGF, beta1 integrin-mediated adhesion did not induce Akt tyrosine phosphorylation. Moreover, tyrosine phosphorylation of Akt was found not to be required for its catalytic activity. The results identify a previously unrecognized mechanism by which beta1 integrins activate the PI3K/Akt pathway.  相似文献   

18.
The bacterial endotoxin LPS is a potent stimulator of monocyte and macrophage activation and induces adhesion of monocytes. Morphological changes in response to LPS have not been characterized in detail, however, nor have the signaling pathways mediating LPS-induced adhesion been elucidated. We have found that LPS rapidly induced adhesion and spreading of peripheral blood monocytes, and that this was inhibited by the Src family kinase inhibitor PP1 and the phosphatidylinositide 3-kinase inhibitor LY294002. LPS also stimulated actin reorganization, leading to the formation of filopodia, lamellipodia, and membrane ruffles in Bac1 mouse macrophages. Proline-rich tyrosine kinase 2 (Pyk2), a tyrosine kinase related to focal adhesion kinase, and paxillin, a cytoskeletal protein that interacts with Pyk2, were both tyrosine phosphorylated in response to LPS in monocytes and macrophages. Both tyrosine phosphorylation events were inhibited by PP1 and LY294002. Adhesion also stimulated tyrosine phosphorylation of Pyk2 and paxillin in monocytes, and this was further enhanced by LPS. Finally, Pyk2 and paxillin colocalized within membrane ruffles in LPS-stimulated cells. These results indicate that LPS stimulation of monocytes and macrophages results in rapid morphological changes and suggest that Pyk2 and/or paxillin play a role in this response.  相似文献   

19.
The gC1qR (i.e., gC1q receptor, gC1q binding protein, p32, p33) is a multifunctional cellular protein that interacts with components of the complement, kinin, and coagulation cascades and select microbial pathogens. Enhanced gC1qR expression has been reported in adenocarcinomas arising in a variety of organs. The present study compared gC1qR expression in normal, inflammatory, dysplastic, and malignant tissue of epithelial and mesenchymal origin. gC1qR expression was visualized in tissue sections by immunohistochemistry using the 60.11 monoclonal antibody (i.e., IgG(1) mouse monoclonal antibody directed against gC1qR) and the UltraVision LP Detection System. Sections were counterstained with hematoxylin and examined by light microscopy. Strongest gC1qR expression was noted in epithelial tumors of breast, prostate, liver, lung, and colon, as well as in squamous and basal cell carcinoma of the skin. However, increased gC1qR staining was appreciated also in inflammatory and proliferative lesions of the same cell types, as well as in normal continuously dividing cells. In contrast, tumors of mesenchymal origin generally stained weakly, with the exception of osteoblasts, which stained in both benign and malignant tissues. The data suggest that increased gC1qR expression may be a marker of benign and pathologic cell proliferation, particularly in cells of epithelial origin, with potential diagnostic and therapeutic applications.  相似文献   

20.
Calpain function in the modulation of signal transduction molecules   总被引:5,自引:0,他引:5  
Calpains are cytosolic cysteine proteases that are activated by a rise in intracellular Ca2+, and are believed to function in stimulating Ca2+ signaling on cell activation, leading the cell to differentiation, proliferation and death. In this review, we focus on the implication of calpains in signal transduction in molecules such as growth factors, T cell receptor, and integrin. Calpains are downstream molecules of hormone receptors, membrane-type tyrosine kinases and adhesion molecules, and proteolyze many signaling-related substrates. The substrates, protein kinase C (PKC), alpha subunit of G-proteins, and protein tyrosine phosphatases, are cleaved at interdomain site(s) and their activities are sustained or upregulated, while the fragments of focal adhesion kinase and the tyrosine kinase src family lose their activity. In the integrin cascade, calpains are upstream molecules of the Rho GTPase family, Rac1 or RhoA, and allow the lamellipodia formation. The significant activation of calpain suggests that calpain activity is regulated not only by an increase in intracellular Ca2+, but also by signaling that include the PKC-, tyrosine kinase- or the adhesion molecule-derived cascade. We have summarized these interesting phenomena, and speculate on the function and location of calpain in the signaling cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号