首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This study investigated the tackling ability of junior elite and subelite rugby league players, and determined the relationship between selected physiological and anthropometric characteristics and tackling ability in these athletes. Twenty-eight junior elite (mean ± SD age, 16.0 ± 0.2 years) and 13 junior subelite (mean ± SD age, 15.9 ± 0.6 years) rugby league players underwent a standardized 1-on-1 tackling drill in a 10-m grid. Video footage was taken from the rear, side, and front of the defending player. Tackling proficiency was assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (stature, body mass, and sum of 7 skinfolds), acceleration (10-m sprint), change of direction speed (505 test), and lower body muscular power (vertical jump). Junior elite players had significantly greater (p < 0.05) tackling proficiency than junior subelite players (65.7 ± 12.5 vs. 54.3 ± 16.8%). Junior elite players tended to be taller, heavier, leaner, and have greater acceleration, change of direction speed, and muscular power, than the junior subelite players. The strongest individual correlates of tackling ability were acceleration (r = 0.60, p < 0.001) and lower body muscular power (r = 0.38, p < 0.05). When multiple linear regression analysis was performed to determine which of the physiological and anthropometric characteristics predicted tackling ability, fast acceleration was the only variable that contributed significantly (r2 = 0.24, p < 0.01) to the predictive model. These findings demonstrate that fast acceleration, and to a lesser extent, lower body muscular power contribute to effective tackling ability in junior rugby league players. From a practical perspective, strength and conditioning coaches should emphasize the development of acceleration and lower body muscular power qualities to improve tackling ability in junior rugby league players.  相似文献   

2.
This study investigated the physiological, anthropometric, and skill characteristics of rugby league players and determined the relationship between physical fitness and playing ability in these athletes. Eighty-six rugby league players (mean +/- SD age, 22.5 +/- 4.9 years) underwent measurements of standard anthropometry (height, body mass, and sum of 4 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and estimated maximal aerobic power (multistage fitness test). In addition, 2 expert coaches independently assessed the playing ability of players using standardized skill criteria. First-grade players had significantly greater (p < 0.05) basic passing and ball-carrying ability and superior skills under fatigue, tackling and defensive skills, and evasion skills (i.e., ability to beat a player and 2 verse 1 skills) than second-grade and third-grade players. While no significant (p > 0.05) differences were detected among playing levels for body mass; skinfold thickness; height; 10-, 20-, or 40-m speed; agility; vertical jump height; or estimated maximal aerobic power, all the physiological and anthropometric characteristics were significantly (p < 0.05) associated with at least 1 measure of playing ability. The results of this study demonstrate that selected skill characteristics but not physiological or anthropometric characteristics discriminate between successful and less successful rugby league players. However, all physiological and anthropometric characteristics were related to playing ability. These findings suggest that while physiological and anthropometric characteristics do not discriminate between successful and less successful rugby league players, a high level of physical fitness contributes to effective playing ability in these athletes. A game-specific training program that incorporates both physical conditioning and skills training may facilitate a greater transfer of physical fitness to competitive performances in rugby league.  相似文献   

3.
This study investigated the physiological and anthropometric characteristics of elite women rugby league players and developed physical performance standards for these athletes. Thirty-two elite women rugby league players underwent measurements of standard anthropometry (body mass, height, sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (505 test), glycolytic capacity (glycolytic agility test), and estimated maximal aerobic power (multistage fitness test). The skinfold thickness, speed, agility, vertical jump height, glycolytic capacity, and estimated maximal aerobic power results were 6.0-38.1% poorer than previously reported for elite women team sport athletes (e.g., rugby union, soccer, and hockey). Although no significant differences (p > 0.05) were detected between selected and nonselected players for any of the physiological or anthropometric characteristics, significant differences (p < 0.05) were detected between forwards and backs for body mass, skinfold thickness, 10-, 20-, and 40-m speed, and estimated maximal aerobic power. When data were analyzed according to positional similarities, it was found that the hit-up forwards positional group were heavier, had greater skinfold thickness, and had lower 10-, 20-, and 40-m speed, muscular power, glycolytic capacity, and estimated maximal aerobic power than the adjustables and outside backs positional groups. The results of this study show that elite women rugby league players have slower speed and agility, lower muscular power, glycolytic capacity, and estimated maximal aerobic power, and greater body mass and skinfold thickness than previously reported for other elite women team sport athletes. These findings show the need to develop all physiological parameters to allow elite women rugby league players to more effectively tolerate the physiological demands of competition, reduce fatigue-related errors in skill execution, and decrease the risk of injury.  相似文献   

4.
There is considerable conflict within the literature regarding the relevance of isometric testing for the assessment of neuromuscular function within dynamic sports. The aim of this study was to determine the relationship between isometric measures of force development and dynamic performance. Thirty-nine professional rugby league players participated in this study. Forty-eight hours after trial familiarization, participants performed a maximal isometric midthigh pull, with ~120-130° bend at the knee, countermovement jump (CMJ), and a 10-m sprint. Force-time data were processed for peak force (PF), force at 100 milliseconds (F100ms), and peak rate of force development (PRFD). Analysis was carried out using Pearson's product moment correlation with significance set at p < 0.05. The PF was not related to dynamic performance; however, when expressed relative to body weight, it was significantly correlated with both 10-m time and CMJ height (r = -0.37 and 0.45, respectively, p < 0.05). The F100ms was inversely related to 10-m time (r = -0.54, p < 0.01); moreover, when expressed relative to body weight, it was significantly related to both 10-m time and CMJ height (r = -0.68 and 0.43, p < 0.01). In addition, significant correlations were found between PRFD and 10-m time (r = -0.66, p < 0.01) and CMJ height (r = 0.387, p < 0.01). In conclusion, this study provides evidence that measures of maximal strength and explosiveness from isometric force-time curves are related to jump and sprint acceleration performance in professional rugby league players.  相似文献   

5.
Success in rugby league football seems heavily reliant on players possessing an adequate degree of various physical fitness qualities, such as strength, power, speed, agility, and endurance, as well as the individual skills and team tactical abilities. The purpose of this study was to describe and compare the lower body strength, power, acceleration, maximal speed, agility, and sprint momentum of elite first-division national rugby league (NRL) players (n = 20) to second-division state league (SRL) players (n = 20) players from the same club. Strength and maximal power were the best discriminators of which players were in the NRL or SRL squads. None of the sprinting tests, such as acceleration (10-m sprint), maximal speed (40-m sprint), or a unique 40-m agility test, could distinguish between the NRL or SRL squads. However, sprint momentum, which was a product of 10-m velocity and body mass, was better for discriminating between NRL and SRL players as heavier, faster players would possess better drive forward and conversely be better able to repel their opponents' drive forward. Strength and conditioning specialists should therefore pay particular attention to increasing lower body strength and power and total body mass through appropriate resistance training while maintaining or improving 10-m sprint speed to provide their players with the underlying performance characteristics of play at the elite level in rugby leagues.  相似文献   

6.
This study investigated the effects of skill-based conditioning games and traditional conditioning for improving speed, agility, muscular power, and maximal aerobic power in rugby league players. Sixty-nine subelite rugby league players performed either a skill-based conditioning games program (N = 32) or a traditional conditioning (i.e., running activities with no skill component) program (N = 37). Each player participated in a 9-week in-season training program, performed over 2 competitive seasons. Players performed 2 organized field-training sessions each week. Players underwent measurements of speed (10-m, 20-m, and 40-m sprint), muscular power (vertical jump), agility (L run), and maximal aerobic power (multi-stage fitness test) before and after the training period. Skill-based conditioning games induced a significant improvement (p < 0.05) in 10-m, 20-m, and 40-m speed, muscular power, and maximal aerobic power, whereas traditional conditioning activities improved 10-m speed and maximal aerobic power only. No significant differences (p > 0.05) were detected between the traditional conditioning and skill-based conditioning games groups for changes in 10-m speed, agility, and maximal aerobic power. Both groups won 6 of 8 matches played within the training period, resulting in a win-loss ratio of 75%. However, on average, the skill-based conditioning games group scored more points in attack (p < 0.05) and had a greater (p < 0.05) points differential than the traditional conditioning group. The results of this study demonstrate that skill-based conditioning games offer an effective method of in-season conditioning for rugby league players. In addition, given that skills learned from skill-based conditioning games are more likely to be applied in the competitive environment, their use may provide a practical alternative to traditional conditioning for improving the physiological capacities and playing performance of rugby league players.  相似文献   

7.
The aim of this study was to (a) investigate the influence of tackling on repeated-sprint performance; (b) determine whether repeated-sprint ability (RSA) and repeated-effort ability (REA) are 2 distinct qualities; and (c) assess the test-retest reliability of repeated-sprint and repeated-effort tests in rugby league. Twelve rugby league players performed a repeated-sprint (12 × 20-m sprints performed on a 20-second cycle) and a repeated-effort (12 × 20-m sprints with intermittent tackling, performed on a 20-second cycle) test 7 days apart. The test-retest reliability of these tests was also established. Heart rate and rating of perceived exertion were recorded throughout the tests. There was a significantly greater (p ≤ 0.05) and large effect size (ES) differences for total sprint time (ES = 1.19), average heart rate (ES = 1.64), peak heart rate (ES = 1.35), and perceived exertion (ES = 3.39) for the repeated-effort test compared with the repeated-sprint test. A large difference (ES = 1.02, p = 0.06) was detected for percentage decrement between the 2 tests. No significant relationship was found between the repeated-sprint and repeated-effort tests for any of the dependent variables. Both tests proved reliable, with total sprint time being the most reliable method of assessing performance. This study demonstrates that the addition of tackling significantly increases the physiological response to repeated-sprint exercise and reduces repeated-sprint performance in rugby league players. Furthermore, RSA and REA appear to be 2 distinct qualities that can be reliably assessed with total time being the most reliable measure of performance.  相似文献   

8.
This study investigated the influence of fatigue on tackling technique in rugby league players and determined the relationship between selected physiological capacities and fatigue-induced decrements in tackling technique. Eight rugby league players underwent a standardized one-on-one tackling drill in a 10-m grid. Players performed the one-on-one tackling drill before strenuous exercise and following game-specific repeated-effort exercise of progressively increasing intensities (corresponding to moderate, heavy, and very heavy intensity) in order to induce fatigue that was representative of match conditions. Video footage was taken from the rear, side, and front of the defending player. Tackling technique was objectively assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (height, body mass, and sum of 7 skinfold measurements), speed (10-, 20-, and 40-m sprint), muscular power (vertical jump), agility (L run), and estimated maximal aerobic power (VO2max multistage fitness test). A progressive increase in total repeated-effort time, heart rate, blood lactate concentration, and ratings of perceived exertion occurred throughout the repeated-effort protocol, demonstrating a progressive increase in intensity and fatigue. Fatigue resulted in progressive reductions in tackling technique. Players with the best tackling technique in a nonfatigued state demonstrated the greatest decrement in tackling technique under fatigued conditions. In addition, a significant association was observed between estimated VO2max (r = -0.62) and agility (r = 0.68) and fatigue-induced decrements in tackling technique. From a practical perspective, these findings suggest that strength and conditioning programs designed to develop endurance, change of direction speed, and anticipation skills may reduce fatigue-induced decrements in tackling technique. Furthermore, any defensive drills designed to improve tackling technique should be performed before and under fatigue.  相似文献   

9.
The purpose of this study was to investigate the time course of adaptations to training in young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players. Fourteen young (14.1 +/- 0.2 years) and 21 older (16.9 +/- 0.3 years) junior rugby league players participated in a 10-week preseason strength, conditioning, and skills program that included 3 sessions each week. Subjects performed measurements of standard anthropometry (i.e., height, body mass, and sum of 7 skinfolds), muscular power (i.e., vertical jump), speed (i.e., 10-m, 20-m, and 40-m sprint), agility (505 test), and estimated maximal aerobic power (i.e., multistage fitness test) before and after training. In addition, players underwent a smaller battery of fitness tests every 3 weeks to assess the time course of adaptation to the prescribed training stimulus. During the triweekly testing sessions, players completed assessments of upper-body (i.e., 60-second push-up, sit-up, and chin-up test) and lower-body (i.e., multiple-effort vertical jump test) muscular endurance. Improvements in maximal aerobic power and muscular endurance were observed in both the young and the older junior players following training. The improvements in speed, muscular power, maximal aerobic power, and upper-body muscular endurance were greatest in the young junior players, while improvements in lower-body muscular endurance were greatest in the older junior players. These findings demonstrate that young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in maturational and training age. In addition, the results of this study provide conditioning coaches with realistic performance improvements following a 10-week preseason strength and conditioning program in junior rugby league players.  相似文献   

10.
This study investigated the physiological and anthropometric characteristics of rugby league players during a competitive season. Sixty-eight rugby league players were allocated into training (n = 52) and nonexercise control (n = 16) groups. The training group participated in 2 field-training sessions per week, with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and maximal aerobic power (multistage fitness test) in December (off-season), March (preseason), May (midseason), and August (end season). Increases in maximal aerobic power and muscular power and reductions in skinfold thickness were observed during the early phases of the season when training loads were highest. However, reductions in muscular power and maximal aerobic power and increases in skinfold thickness occurred toward the end of the season, when training loads were lowest and match loads and injury rates were highest. These findings suggest that high overall playing intensity and match loads in end-season matches increase in injury rates in the latter half of the season, and residual fatigue associated with limited recovery between successive matches may compromise the physical development of rugby league players.  相似文献   

11.
The purpose of this study was to identify whether there was a relationship between relative strength during a 1 repetition maximum (1RM) back squat and 5-, 10-, and 20-m sprint performances in both trained athletes and recreationally trained individuals. Professional rugby league players (n = 24) and recreationally trained individuals (n = 20) participated in this investigation. Twenty-meter sprint time and 1RM back squat strength, using free weights, were assessed on different days. There were no significant (p ≥ 0.05) differences between the well-trained and recreationally trained groups for 5-m sprint times. In contrast, the well-trained group's 10- and 20-m sprint times were significantly quicker (p = 0.004; p = 0.002) (1.78 + 0.06 seconds; 3.03 + 0.09 seconds) compared with the recreationally trained group (1.84 + 0.07 seconds; 3.13 + 0.11 seconds). The athletes were significantly stronger (170.63 + 21.43 kg) than the recreationally trained individuals (135.45 + 30.07 kg) (p = 0.01); however, there were no significant differences (p > 0.05) in relative strength between groups (1.78 + 0.27 kg/kg; 1.78 + 0.33 kg/kg, respectively). Significant negative correlations were found between 5-m sprint time and relative squat strength (r = -0.613, power = 0.96, p = 0.004) and between relative squat strength and 10- and 20-m sprint times in the recreationally trained group (r = -0.621, power = 0.51, p = 0.003; r = -0.604, power = 0.53, p = 0.005, respectively). These results, indicating that relative strength, are important for initial sprint acceleration in all athletes but more strongly related to sprint performance over greater distances in recreationally trained individuals.  相似文献   

12.
This study investigated training loads, injury rates, and physical performance changes associated with a field conditioning program in junior and senior rugby league players. Thirty-six junior (16.9 [95% confidence interval: 16.7-17.1] years) and 41 senior (25.5 [23.6- 27.3] years) rugby league players participated in a 14-week preseason training program that included 2 field training sessions each week. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and maximal aerobic power (multistage fitness test) before and after training. Improvements in agility, muscular power, and maximal aerobic power were observed in both the junior and senior players following training; however, the improvement in maximal aerobic power and muscular power were greatest in the junior players. Training loads and injury rates were higher in the senior players. These findings demonstrate that junior and senior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in training age.  相似文献   

13.
Previous research has demonstrated that muscular strength of the knee extensors is related to the speed an athlete can produce during a single-sprint performance. Football players, as well as many other athletes on the field and the court, execute multiple sprints during the course of a match. The purpose of this study was to examine the relationships between leg strength, single-sprint speed, and repeated-sprint ability. Thirty-eight football players from 3 codes (soccer, rugby league, rugby union) completed a 12- x 20-m repeated-sprint protocol and were evaluated for peak isokinetic knee extension and flexion torque at 60 degrees .s(-1), 150 degrees .s(-1), and 240 degrees .s(-1). Although single-sprint performance correlated with peak extensor and flexor torque at all velocities, the strongest correlation was observed between relative knee extensor torque at 240 degrees .s(-1) and the initial acceleration phase (0-10 m) of the single-sprint performance (r = -0.714, p < 0.01). However, the data suggest that factors other than strength contribute to repeated-sprint ability. This finding provides new evidence in elucidating the relationship between strength and repeated-sprint performance.  相似文献   

14.
This study investigated the physiological and anthropometric characteristics of junior rugby league players over a competitive season. Forty-five rugby league players were allocated into training (n = 36) and nonexercise control (n = 9) groups. The training group participated in 2 field-training sessions each week with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility ('L run'), and estimated maximal aerobic power (multi-stage fitness test) in December (off-season), March (preseason), May (midseason), and August (end-season). Training loads progressively increased in the general preparatory phase of the season (preseason period), and declined slightly during the competitive phase of the season. Match intensity and match loads decreased throughout the season. Increases in estimated maximal aerobic power and muscular power and reductions in skinfold thickness occurred during the general preparatory phase of the season, and were maintained throughout the competitive phase of the season. These findings suggest that high training loads in the general preparatory phase of the season and low match loads in the competitive phase of the season allow junior rugby league players to maintain a high level of fitness throughout an entire competitive season.  相似文献   

15.
The purpose of the present study was to examine the influence of direct supervision on muscular strength, power, and running speed during 12 weeks of resistance training in young rugby league players. Two matched groups of young (16.7 +/- 1.1 years [mean +/- SD]), talented rugby league players completed the same periodized resistance-training program in either a supervised (SUP) (N = 21) or an unsupervised (UNSUP) (N = 21) environment. Measures of 3 repetition maximum (3RM) bench press, 3RM squat, maximal chin-ups, vertical jump, 10- and 20-m sprints, and body mass were completed pretest (week 0), midtest (week 6), and posttest (week 12) training program. Results show that 12 weeks of periodized resistance training resulted in an increased body mass, 3RM bench press, 3RM squat, maximum number of chin-ups, vertical jump height, and 10- and 20-m sprint performance in both groups (p < 0.05). The SUP group completed significantly more training sessions, which were significantly correlated to strength increases for 3RM bench press and squat (p < 0.05). Furthermore, the SUP group significantly increased 3RM squat strength (at 6 and 12 weeks) and 3RM bench press strength (12 weeks) when compared to the UNSUP group (p < 0.05). Finally, the percent increase in the 3RM bench press, 3RM squat, and chin-up(max) was also significantly greater in the SUP group than in the UNSUP group (p < 0.05). These findings show that the direct supervision of resistance training in young athletes results in greater training adherence and increased strength gains than does unsupervised training.  相似文献   

16.
The purpose of this study was to assess the performance of elite rugby league players by using the Yo-Yo Intermittent Recovery Test. Fifty players were recruited to the study during preseason and were classified as professional (P) or semiprofessional (SP). All performed the level 1 Yo-Yo Intermittent Recovery Test. Total distance achieved was taken as the performance index. Physiological (heart rate and blood lactate) correlates of performance were also assessed. Results showed that P players achieved a greater total distance than did SP players (p > 0.05). End heart rates did not differ significantly (p < 0.05). Semiprofessional players had significantly lower end blood lactate values than did P players (p < 0.05). Relationships between test performance and physiological variables were not significant (p > 0.05). These findings showed that P and SP players performed the test at a comparable level. Physiological indices indicated that performance was near maximal. The test is considered a useful measure of intermittent high-intensity performance for rugby league players.  相似文献   

17.
For many sporting activities, initial speed rather than maximal speed would be considered of greater importance to successful performance. The purpose of this study was to identify the relationship between strength and power and measures of first-step quickness (5-m time), acceleration (10-m time), and maximal speed (30-m time). The maximal strength (3 repetition maximum [3RM]), power (30-kg jump squat, countermovement, and drop jumps), isokinetic strength measures (hamstring and quadriceps peak torques and ratios at 60 degrees .s(-1) and 300 degrees .s(-1)) and 5-m, 10-m, and 30-m sprint times of 26 part-time and full-time professional rugby league players (age 23.2 +/- 3.3 years) were measured. To examine the importance of the strength and power measures on sprint performance, a correlational approach and a comparison between means of the fastest and slowest players was used. The correlations between the 3RM, drop jump, isokinetic strength measures, and the 3 measures of sport speed were nonsignificant. Correlations between the jump squat (height and relative power output) and countermovement jump height and the 3 speed measures were significant (r = -0.43 to -0.66, p < 0.05). The squat and countermovement jump heights as well as squat jump relative power output were the only variables found to be significantly greater in the fast players. It was suggested that improving the power to weight ratio as well as plyometric training involving countermovement and loaded jump-squat training may be more effective for enhancing sport speed in elite players.  相似文献   

18.
The purpose of this study was to investigate the effect of changes in field size on the physiological and skill demands of small-sided games in elite junior and senior rugby league players. Sixteen elite senior rugby league players ([mean ± SE] age, 23.6 ± 0.5 years) and 16 elite junior rugby league players ([mean ± SE] age, 17.3 ± 0.3 years) participated in this study. On day 1, 2 teams played an 8-minute small-sided game on a small field (10-m width × 40-m length), whereas the remaining 2 teams played the small-sided game on a larger sized field (40-m width × 70-m length). On day 2, the groups were crossed over. Movement was recorded by a global positioning system unit sampling at 5 Hz. Games were filmed to count the number of possessions and the number and quality of disposals. The games played on a larger field resulted in a greater (p < 0.05) total distance covered, and distances covered in moderate, high, and very-high velocity movement intensities. Senior players covered more distance at moderate, high, and very-high intensities, and less distance at low and very-low intensities during small-sided games than junior players. Although increasing field size had no significant influence (p > 0.05) over the duration of recovery periods for junior players, larger field size significantly reduced (p < 0.05) the amount of short-, moderate-, and long-duration recovery periods in senior players. No significant between-group differences (p > 0.05) were detected for games played on a small or large field for the number or quality of skill involvements. These results suggest that increases in field size serve to increase the physiological demands of small-sided games but have minimal influence over the volume or quality of skill executions in elite rugby league players.  相似文献   

19.
20.
This study investigated the site and nature of rugby league training injuries, and identified the training activities that were most likely to result in injury in rugby league players. The incidence of training injuries was prospectively studied in 60 semiprofessional rugby league players over 1 season. Injury data was collected from 72 training sessions, which included all preseason and in-season training sessions. Injuries were described according to site, type, and the training activity performed at the time of injury. The majority of injuries (90.9 per 1000 training hours, 37.5%) were sustained in traditional conditioning activities that involved no skill component (i.e., running without the ball). In contrast, the incidence of injuries sustained while participating in skill-based conditioning games (26.0 per 1000 training hours, 10.7%) was low. These results suggest that skill-based conditioning games offer a safe, effective method of conditioning for rugby league players.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号