首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Structural variants (SVs) represent an important genetic resource for both natural and artificial selection. Here we present a chromosome-scale reference genome for domestic yak (Bos grunniens) that has longer contigs and scaffolds (N50 44.72 and 114.39 Mb, respectively) than reported for any other ruminant genome. We further obtained long-read resequencing data for 6 wild and 23 domestic yaks and constructed a genetic SV map of 372,220 SVs that covers the geographic range of the yaks. The majority of the SVs contains repetitive sequences and several are in or near genes. By comparing SVs in domestic and wild yaks, we identified genes that are predominantly related to the nervous system, behavior, immunity, and reproduction and may have been targeted by artificial selection during yak domestication. These findings provide new insights in the domestication of animals living at high altitude and highlight the importance of SVs in animal domestication.  相似文献   

2.
Accumulation of deleterious mutations in the domestic yak genome   总被引:1,自引:0,他引:1       下载免费PDF全文
X. Xie  Y. Yang  Q. Ren  X. Ding  P. Bao  B. Yan  X. Yan  J. Han  P. Yan  Q. Qiu 《Animal genetics》2018,49(5):384-392
Deleterious mutations play an important functional role, affecting trait phenotypes in ways that decrease the fitness of organisms. Estimating the frequency of occurrence and abundance has been a topic of much interest, especially in crops and livestock. The processes of domestication and breeding allow deleterious mutations to persist at high frequency, and identifying such deleterious mutations is particularly important for breed improvement. Here, we assessed genome‐wide patterns of deleterious variation in 59 domestic and 13 wild yaks using genome resequencing data. Based on the intersection of results given by three methods (provean , polyphen 2 and sift 4g ), we identified 3187 putative deleterious mutation sites affecting 2586 genes in domestic yaks and 2067 affecting 1701 genes in wild yaks. Multiple lines of evidence indicate a significant increase in the load of deleterious mutations in domesticated yaks compared to wild yaks. Private deleterious genes were found to be associated with the perception of smell and detection of chemical stimulus. We also identified 36 genes related to Mendelian genetic diseases involved in sensory perception, skeletal development and the nervous and immune systems. This study not only adds to the understanding of the genetic basis of yak domestication but also provides a rich catalog of variants that will facilitate future breeding‐related research on the yak genome and on other bovid species.  相似文献   

3.
Aim We aimed to examine the phylogeographical structure and demographic history of domestic and wild yaks (Bos grunniens) based on a wide range of samples and complete mitochondrial genomic sequences. Location The Qinghai‐Tibetan Plateau (QTP) of western China. Methods All available D‐loop sequences for 405 domesticated yaks and 47 wild yaks were examined, including new sequences from 96 domestic and 34 wild yaks. We further sequenced the complete mitochondrial genomes of 48 domesticated and 21 wild yaks. Phylogeographical analyses were performed using the mitochondrial D‐loop and the total genome datasets. Results We recovered a total of 123 haplotypes based on the D‐loop sequences in wild and domestic yaks. Phylogenetic analyses of this dataset and the mitochondrial genome data suggested three well‐supported and divergent lineages. Two lineages with six D‐loop haplogroups were recovered for all morphological breeds of domestic yaks across their distributions in the QTP, while one more lineage and more endemic haplogroups or haplotypes were found for wild yaks. Based on the mitochondrial genome data, the divergences of the three lineages were estimated to have occurred around 420,000 and 580,000 years ago, consistent with the geological records of two large glaciation events experienced in the QTP. Main conclusions There are distinct phylogeographical differences between wild and domestic yaks. However, there is no apparent geographical correlation between identified haplogroups and distributions of domestic yaks. Three differentiated lineages of yaks probably evolved allopatrically in different regions during the Pleistocene glaciation events, then reunited into a single gene pool during post‐glacial population expansion and migrations before the start of the domestication of yaks in the Holocene.  相似文献   

4.
Origin of mitochondrial DNA diversity of domestic yaks   总被引:4,自引:0,他引:4  

Background  

The domestication of plants and animals was extremely important anthropologically. Previous studies have revealed a general tendency for populations of livestock species to include deeply divergent maternal lineages, indicating that they were domesticated in multiple, independent events from genetically discrete wild populations. However, in water buffalo, there are suggestions that a similar deep maternal bifurcation may have originated from a single population. These hypotheses have rarely been rigorously tested because of a lack of sufficient wild samples. To investigate the origin of the domestic yak (Poephagus grunnies), we analyzed 637 bp of maternal inherited mtDNA from 13 wild yaks (including eight wild yaks from a small population in west Qinghai) and 250 domesticated yaks from major herding regions.  相似文献   

5.
The wild yak Bos mutus was believed to be regionally extinct in Nepal for decades until our team documented two individuals from Upper Humla, north‐western Nepal, in 2014. The International Union for Conservation of Nature (IUCN) seeks further evidence for the conclusive confirmation of that sighting. We conducted line transects and opportunistic sign surveys in the potential wild yak habitats of Humla, Dolpa, and Mustang districts between 2015 and 2017 and collected genetic samples (present and historic) of wild and domestic yaks Bos grunniens. We also sighted another wild yak in Upper Humla in 2015. Phylogenetic and haplotype network analyses based on mitochondrial D‐loop sequences (~450 bp) revealed that wild yaks in Humla share the haplotype with wild yaks from the north‐western region of the Qinghai‐Tibetan Plateau in China. While hybridization with domestic yaks is a major long‐term threat, illegal hunting for meat and trophy put the very small populations of wild yaks in Nepal at risk. Our study indicates that the unprotected habitat of Upper Humla is the last refuge for wild yaks in Nepal. We recommend wild yak conservation efforts in the country to focus on Upper Humla by (i) assigning a formal status of protected area to the region, (ii) raising awareness in the local communities for wild yak conservation, and (iii) providing support for adaptation of herding practice and pastureland use to ensure the viability of the population.  相似文献   

6.
The extent of molecular differentiation between domesticated animals or plants and their wild relatives is postulated to be small. The availability of the complete genome sequences of two subspecies of the Asian rice, Oryza sativa (indica and japonica) and their wild relatives have provided an unprecedented opportunity to study divergence following domestication. We observed significantly more amino acid substitutions during rice domestication than can be expected from a comparison among wild species. This excess is disproportionately larger for the more radical kinds of amino acid changes (e.g. Cys<-->Tyr). We estimate that approximately a quarter of the amino acid differences between rice cultivars are deleterious, not accountable by the relaxation of selective constraints. This excess is negatively correlated with the rate of recombination, suggesting that 'hitchhiking' has occurred. We hypothesize that during domestication artificial selection increased the frequency of many deleterious mutations.  相似文献   

7.
野牦牛和家牦牛粪便菌群与短链脂肪酸关系的研究   总被引:1,自引:0,他引:1  
短链脂肪酸(SCFA)是反刍动物吸收饲草、饲料中营养物质的重要形式。肠道菌群能够降解食物生成SCFA并影响其比例。本文通过16S r DNA测序和气相色谱质谱联用仪,分别测定了野牦牛(Bos mutus)和家牦牛(Bos grunniens)粪便菌群组成及SCFA含量,通过比较分析两种牦牛肠道菌群与SCFA的关系,筛选出野牦牛肠道中与SCFA高浓度有正相关关系的菌群。结果显示,野牦牛粪便菌群主要有厚壁菌门(Firmicutes)(66. 47%)、拟杆菌门(Bacteroidetes)(26. 00%)和变形菌门(Proteobacteria)(3. 48%),主要的科有瘤胃球菌科(Ruminococcaceae)(55. 18%)、拟杆菌科(Bacteroidaceae)(8. 75%)和毛螺菌科(Lachnospiraceae)(7. 57%),家牦牛的菌群结构和组成与野牦牛相似。野牦牛粪便中SCFA以乙酸和丙酸为主,乙酸、丙酸、异丁酸、正丁酸和正戊酸的含量均显著高于家牦牛(P <0. 01)。Spearman相关分析显示,野牦牛粪便菌群中紫单胞菌科(Porphyromonadaceae)、拟杆菌科(Bacteroidaceae)、普雷沃氏菌科(Paraprevotellaceae)、理研菌科(Rikenellaceae)和韦荣球菌科(Erysipelotrichaceae)与SCFA具有较强相关性(r> 0. 4),而家牦牛仅有弱相关性(r <0. 3)。说明牦牛后肠道具有丰富的能够促进SCFA生成的益生菌群,进而提高食物的转化效率。  相似文献   

8.
野牦牛线粒体基因组序列测定及其系统进化   总被引:1,自引:0,他引:1  
野牦牛属高寒地区的特有物种,是我国最珍贵的野生动物遗传资源之一,已被列为国家一级重点保护动物。对野牦牛mtDNA进行全序列测定和结构分析,并基于线粒体基因组序列对其系统发生进行了探讨。结果表明:(1)野牦牛线粒体基因组全序列的大小为16 322 bp,整个基因组由37个编码基因和D-loop区组成;22个tRNA基因序列长度为1 524 bp、2个RNA基因序列长度为2 528 bp、13个编码蛋白基因序列长度为11420 bp、D-loop区长度为892 bp。基因组中无间隔序列,基因间排列紧密,基因内无内含子。(2)野牦牛具有较丰富的遗传多样性。(3)分子系统发生关系显示牦牛为牛亚科中的一个独立属,即牦牛属(Poephagus),牦牛属包括家牦牛(Poephagus grunniens)和野牦牛(Poephagus mutus)2个种。野牦牛线粒体基因组全序列的获得和结构解析对研究牦牛的起源、演化和分类,以及野牦牛遗传资源的保护、开发和利用均具有重要的理论和实际意义。  相似文献   

9.
Yak is an important livestock animal for the people indigenous to the harsh, oxygen‐limited Qinghai‐Tibetan Plateau and Hindu Kush ranges of the Himalayas. The yak genome was sequenced in 2012, but its assembly was fragmented because of the inherent limitations of the Illumina sequencing technology used to analyse it. An accurate and complete reference genome is essential for the study of genetic variations in this species. Long‐read sequences are more complete than their short‐read counterparts and have been successfully applied towards high‐quality genome assembly for various species. In this study, we present a high‐quality chromosome‐scale yak genome assembly (BosGru_PB_v1.0) constructed with long‐read sequencing and chromatin interaction technologies. Compared to an existing yak genome assembly (BosGru_v2.0), BosGru_PB_v1.0 shows substantially improved chromosome sequence continuity, reduced repetitive structure ambiguity, and gene model completeness. To characterize genetic variation in yak, we generated de novo genome assemblies based on Illumina short reads for seven recognized domestic yak breeds in Tibet and Sichuan and one wild yak from Hoh Xil. We compared these eight assemblies to the BosGru_PB_v1.0 genome, obtained a comprehensive map of yak genetic diversity at the whole‐genome level, and identified several protein‐coding genes absent from the BosGru_PB_v1.0 assembly. Despite the genetic bottleneck experienced by wild yak, their diversity was nonetheless higher than that of domestic yak. Here, we identified breed‐specific sequences and genes by whole‐genome alignment, which may facilitate yak breed identification.  相似文献   

10.
The yak is one of the few animals that can thrive in the harsh environment of the Qinghai‐Tibetan Plateau and adjacent Alpine regions. Yak provides essential resources allowing Tibetans to live at high altitudes. However, genetic variation within and between wild and domestic yak remain unknown. Here, we present a genome‐wide study of the genetic variation within and between wild and domestic yak. Using next‐generation sequencing technology, we resequenced three wild and three domestic yak with a mean of fivefold coverage using our published domestic yak genome as a reference. We identified a total of 8.38 million SNPs (7.14 million novel), 383 241 InDels and 126 352 structural variants between the six yak. We observed higher linkage disequilibrium in domestic yak than in wild yak and a modest but distinct genetic divergence between these two groups. We further identified more than a thousand of potential selected regions (PSRs) for the three domestic yak by scanning the whole genome. These genomic resources can be further used to study genetic diversity and select superior breeds of yak and other bovid species.  相似文献   

11.
Despite having only begun ~10,000 years ago, the process of domestication has resulted in a degree of phenotypic variation within individual species normally associated with much deeper evolutionary time scales. Though many variable traits found in domestic animals are the result of relatively recent human-mediated selection, uncertainty remains as to whether the modern ubiquity of long-standing variable traits such as coat color results from selection or drift, and whether the underlying alleles were present in the wild ancestor or appeared after domestication began. Here, through an investigation of sequence diversity at the porcine melanocortin receptor 1 (MC1R) locus, we provide evidence that wild and domestic pig (Sus scrofa) haplotypes from China and Europe are the result of strikingly different selection pressures, and that coat color variation is the result of intentional selection for alleles that appeared after the advent of domestication. Asian and European wild boar (evolutionarily distinct subspecies) differed only by synonymous substitutions, demonstrating that camouflage coat color is maintained by purifying selection. In domestic pigs, however, each of nine unique mutations altered the amino acid sequence thus generating coat color diversity. Most domestic MC1R alleles differed by more than one mutation from the wild-type, implying a long history of strong positive selection for coat color variants, during which time humans have cherry-picked rare mutations that would be quickly eliminated in wild contexts. This pattern demonstrates that coat color phenotypes result from direct human selection and not via a simple relaxation of natural selective pressures.  相似文献   

12.
Current knowledge on chicken domestication is reviewed on the basis of archaeological, historical and molecular data. Several domestication centres have been identified in South and South-East Asia. Gallus?gallus is the major ancestor species, but Gallus?sonneratii has also contributed to the genetic make-up of the domestic chicken. Genetic diversity is now distributed among traditional populations, standardized breeds and highly selected lines. Knowing the genome sequence has accelerated the identification of causal mutations determining major morphological differences between wild Gallus and domestic breeds. Comparative genome resequencing between Gallus and domestic chickens has identified 21 selective sweeps, one involving a non-synonymous mutation in the TSHR gene, which functional consequences remain to be explored. The resequencing approach could also identify candidate genes responsible of quantitative traits loci (QTL) effects in selected lines. Genomics is opening new ways to understand major switches that took place during domestication and subsequent selection.  相似文献   

13.
The hypothesis that domestication leads to a relaxation of purifying selection on mitochondrial (mt) genomes was tested by comparative analysis of mt genes from dog, pig, chicken, and silkworm. The three vertebrate species showed mt genome phylogenies in which domestic and wild isolates were intermingled, whereas the domestic silkworm (Bombyx mori) formed a distinct cluster nested within its closest wild relative (Bombyx mandarina). In spite of these differences in phylogenetic pattern, significantly greater proportions of nonsynonymous SNPs than of synonymous SNPs were unique to the domestic populations of all four species. Likewise, in all four species, significantly greater proportions of RNA-encoding SNPs than of synonymous SNPs were unique to the domestic populations. Thus, domestic populations were characterized by an excess of unique polymorphisms in two categories generally subject to purifying selection: nonsynonymous sites and RNA-encoding sites. Many of these unique polymorphisms thus seem likely to be slightly deleterious; the latter hypothesis was supported by the generally lower gene diversities of polymorphisms unique to domestic populations in comparison to those of polymorphisms shared by domestic and wild populations.  相似文献   

14.
The Tianzhu white yak, a domestic yak indigenous to the Qilian Mountains, migrated inland from the Qinghai‐Tibet Plateau. Specific ecological and long‐term artificial selection influenced the evolution of its pure white coat and physiological characteristics. Therefore, it is not only a natural population that represents a genomic selective region of environmental adaptability but is also an animal model for studying the pigmentation of the yak coat. A total of 24 261 829 variants, including 22 445 252 SNPs, were obtained from 29 yaks by genome‐wide re‐sequencing. According to the results of a selective sweep analysis of Tianzhu white yak in comparison to Tibetan yaks, nine candidate genes under selection in Tianzhu white yak were identified by combining π, Tajima's D, πA/πB and FST statistics, with threshold standards of 5%. These genes include PDCD1, NUP210, ABCG8, NEU4, LOC102287650, D2HGDH, COL4A1, RTP5 and HDAC11. Five of the nine genes were classified into 12 molecular signaling pathways, and most of these signaling pathways are involved in environmental information processing, organismal systems and metabolism. A majority of these genes has not been implicated in previous studies of yak coat color and high‐altitude animals. Our findings are helpful not only for explaining the molecular mechanism of yak coat pigmentation but also for exploring the genetic changes in Tianzhu white yak due to environmental adaptation.  相似文献   

15.
Genetic data from extant donkeys (Equus asinus) have revealed two distinct mitochondrial DNA haplogroups, suggestive of two separate domestication events in northeast Africa about 5000 years ago. Without distinct phylogeographic structure in domestic donkey haplogroups and with little information on the genetic makeup of the ancestral African wild ass, however, it has been difficult to identify wild ancestors and geographical origins for the domestic mitochondrial clades. Our analysis of ancient archaeological and historic museum samples provides the first genetic information on the historic Nubian wild ass (Equus africanus africanus), Somali wild ass (Equus africanus somaliensis) and ancient donkey. The results demonstrate that the Nubian wild ass was an ancestor of the first donkey haplogroup. In contrast, the Somali wild ass has considerable mitochondrial divergence from the Nubian wild ass and domestic donkeys. These findings resolve the long-standing issue of the role of the Nubian wild ass in the domestication of the donkey, but raise new questions regarding the second ancestor for the donkey. Our results illustrate the complexity of animal domestication, and have conservation implications for critically endangered Nubian and Somali wild ass.  相似文献   

16.
The yak (Bos grunniens) is the most important domesticated species in the Qinhai-Tibetan Plateau. In present study, the complete sequence of the yak mitochondrial genome was determined. Sequence analysis revealed that there are no differences with cattle in the yak mitochondrial genome organization. Interestingly, within the D-loop, the conserved sequence blocks are less conserved than surrounding regions. Neighbor-Joining (NJ) trees based on single genes, gene sets and concatenated genes of mitochondrial genome were constructed. The analysis identified the yak as a sister group of a cattle/zebu clade. Based on substitutions in 22 tRNA genes, 12S rRNA gene and 16S rRNA gene, the dating of divergence between yak and cattle/zebu, and yak and water buffalo, was proposed to have occurred 4.38-5.32 and 10.54-13.85 million years before present, respectively. This is consistent with the paleontologyical data. Yak and sheep/goat divergent dating predicts that their divergence occurred at 13.14-27.99 million years before the present day.  相似文献   

17.
Although there is little doubt that the domestication of mammals was instrumental for the modernization of human societies, even basic features of the path towards domestication remain largely unresolved for many species. Reindeer are considered to be in the early phase of domestication with wild and domestic herds still coexisting widely across Eurasia. This provides a unique model system for understanding how the early domestication process may have taken place. We analysed mitochondrial sequences and nuclear microsatellites in domestic and wild herds throughout Eurasia to address the origin of reindeer herding and domestication history. Our data demonstrate independent origins of domestic reindeer in Russia and Fennoscandia. This implies that the Saami people of Fennoscandia domesticated their own reindeer independently of the indigenous cultures in western Russia. We also found that augmentation of local reindeer herds by crossing with wild animals has been common. However, some wild reindeer populations have not contributed to the domestic gene pool, suggesting variation in domestication potential among populations. These differences may explain why geographically isolated indigenous groups have been able to make the technological shift from mobile hunting to large-scale reindeer pastoralism independently.  相似文献   

18.
Domestic yaks (Bos grunniens) exhibit two major coat color variations: a brown vs. wild‐type black pigmentation and a white spotting vs. wild‐type solid color pattern. The genetic basis for these variations in color and distribution remains largely unknown and may be complicated by a breeding history involving hybridization between yaks and cattle. Here, we investigated 92 domestic yaks from China using a candidate gene approach. Sequence variations in MC1R, PMEL and TYRP1 were surveyed in brown yaks; TYRP1 was unassociated with the coloration and excluded. Recessive mutations from MC1R, or p.Gln34*, p.Met73Leu and possibly p.Arg142Pro, are reported in bovids for the first time and accounted for approximately 40% of the brown yaks in this study. The remaining 60% of brown individuals correlated with a cattle‐derived deletion mutation from PMEL (p.Leu18del) in a dominant manner. Degrees of white spotting found in yaks vary from color sidedness and white face, to completely white. After examining the candidate gene KIT, we suggest that color‐sided and all‐white yaks are caused by the serial translations of KIT (Cs6 or Cs29) as reported for cattle. The white‐faced phenotype in yaks is associated with the KIT haplotype Swf. All KIT mutations underlying the serial phenotypes of white spotting in yaks are identical to those in cattle, indicating that cattle are the likely source of white spotting in yaks. Our results reveal the complex genetic origins of domestic yak coat color as either native in yaks through evolution and domestication or as introduced from cattle through interspecific hybridization.  相似文献   

19.
The yak (Bos grunniens) is a long-haired bovid, endemic to the Tibetan Plateau and the adjacent high-altitude regions. The domesticated subspecies of yak (B. grunniens grunniens) are abundant and closely associated with the livelihoods of herders, while the wild subspecies of yak (B. grunniens mutus) are endangered due primarily to anthropogenic effects. The endangered status of wild yaks calls for consideration, if we are to secure its long term survival, hence this study. Here we hope to provide baseline information necessary for further research and protection of the wild yak resources. We use published data to discuss their evolution, their characteristics as well as their distribution in the Tibetan Plateau and the adjacent high-altitude regions. We were able to come up with a world wild yak distribution map, which may be useful for establishing protected areas, as well as updating the species IUCN Red List Status. From the data available, we were also able to provide an estimate of the wild yak population in China (∼22,000 wild yaks living in China), corresponding to 90% of the total world population. We further discuss the major threats to yaks, and we give some suggestions for future and sustainable conservation.  相似文献   

20.
Up to date, the scarcity of publicly available complete mitochondrial sequences for European wild pigs hampers deeper understanding about the genetic changes following domestication. Here, we have assembled 26 de novo mtDNA sequences of European wild boars from next generation sequencing (NGS) data and downloaded 174 complete mtDNA sequences to assess the genetic relationship, nucleotide diversity, and selection. The Bayesian consensus tree reveals the clear divergence between the European and Asian clade and a very small portion (10 out of 200 samples) of maternal introgression. The overall nucleotides diversities of the mtDNA sequences have been reduced following domestication. Interestingly, the selection efficiencies in both European and Asian domestic pigs are reduced, probably caused by changes in both selection constraints and maternal population size following domestication. This study suggests that de novo assembled mitogenomes can be a great boon to uncover the genetic turnover following domestication. Further investigation is warranted to include more samples from the ever-increasing amounts of NGS data to help us to better understand the process of domestication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号