首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukotriene B4 and late asthmatic reactions induced by toluene diisocyanate   总被引:1,自引:0,他引:1  
We investigated whether leukotriene B4 (LTB4) is released from the lungs of sensitized subjects during asthmatic reactions induced by toluene diisocyanate (TDI). We examined three groups of TDI-sensitized subjects, one after no exposure to TDI, the second 8 h after an exposure to TDI that caused an early asthmatic reaction, and the third 8 h after an exposure to TDI that caused a late asthmatic reaction. We analyzed bronchoalveolar lavage (BAL) fluid by reverse-phase high-performance liquid chromatography and by specific radioimmunoassay. The mean concentration of LTB4 was higher [0.31 +/- 0.09 (SE) ng/ml, range 0.15-0.51] in BAL fluid of sensitized subjects who developed a late asthmatic reaction than in BAL fluid of subjects who developed an early asthmatic reaction (0.05 +/- 0.04 ng/ml, range 0-0.224), and no LTB4 was detectable in the control subjects. We also performed BAL 8 h after TDI exposure on four TDI-sensitized late-dual reactors who were on steroid treatment. In this group of subjects no LTB4 was detectable. These results suggest that LTB4 may be involved in late asthmatic reactions induced by TDI.  相似文献   

2.
白三烯B_4(LTB_4)是重要的炎性介质,其作用通过与特异性受体结合而实现。LTB_4受体有高、低亲和力两类,前者主要介导白细胞趋化、聚集和细胞内钙升高,后者与溶酶体酶释放有关。  相似文献   

3.
Leukotriene B4 biosynthesis by alveolar macrophages   总被引:3,自引:0,他引:3  
Resting alveolar macrophages in culture synthesized small amount of leukotriene B4. This synthesis was increased 2.5 fold following phagocytic stimulation by zymosan, and was increased 12.6 fold after stimulation with calcium and calcium ionophore A23187. The leukotriene B4 synthesis could be completely inhibited by nordihydroguaiaretic acid (10?5M). Phorbol myristate acetate, a membrane perturbant, has no effect on leukotriene B4 production by macrophages.  相似文献   

4.
Leukotriene B4 (LTB4) induced a transient state of hyperadhesiveness in cultured human umbilical vein endothelial cells (HUVEC), leading to increased binding of neutrophil granulocytes (PMN). The effect of LTB4 was more rapidly emerging and transient than responses to platelet activating factor (PAF), thrombin and phorbol myristate acetate (PMA). At 0.1 microM of LTB4, it was comparable to hyperadhesiveness induced by 1 U/ml of thrombin, but less than that conferred by 0.1 microM of PAF and PMA. The adherence response to LTB4 was specific since the structural analogue 5S,12S-diHETE, which lacks PMN-stimulating effects, failed to promote HUVEC adhesiveness.  相似文献   

5.
Lipoxins are trihydroxytetraene metabolites which are derived from arachidonic acid through an interaction between different lipoxygenase pathways. Previous work has shown that lipoxin A4 (LXA4) inhibits the chemotactic responsiveness of neutrophils (PMN) to leukotriene B4. We have now assessed the structural determinants of the lipoxin A4 molecule which are necessary for its inhibitory activity, using structural analogs of LXA4 prepared by chemical synthesis. Our results indicate the importance of two adjacent free hydroxyl groups in either the R or the S configuration; one hydroxyl group has to be in the C-6 position, but the other hydroxyl group can be in either the C-5 or the C-7 position for the conferment of inhibitory activity.  相似文献   

6.
Leukotriene B4 metabolism by hepatic cytochrome P-450   总被引:2,自引:0,他引:2  
Leukotriene B4 (LTB) was found to be metabolized by suspensions of rat liver microsomes in the presence of NADPH and oxygen. The rate of LTB metabolism was also measured in reconstituted systems of both micelles and phospholipid vesicles containing cytochrome P-450-LM2, NADPH cytochrome P-450 reductase, and cytochrome b5. A 1 microM concentration of LTB was metabolized by rat hepatic microsomes at a rate of 4 pmol LTB/min/nmole P-450, and by vesicle and micelle reconstituted systems at 3 pmole/min/nmole P-450-LM2. At this rate a 10 g rat liver exposed to 1 microM LTB can metabolize 30 micrograms per hour. In that the leukotrienes are pharmacologically active at nanomolar concentrations, hepatic metabolism may be an important pathway of leukotriene inactivation.  相似文献   

7.
Heparin potentiates in vivo neutrophil migration induced by IL-8   总被引:1,自引:0,他引:1  
Chemokine IL-8 attracts neutrophils by a haptotactic gradient, made possible by its interaction with proteoglycans of the extracellular matrix. Heparan sulfate, but not heparin, potentiates the attraction exerted in vitro by IL-8. In the present study we first confirmed this in vitro phenomenon, observing that IL-8 activity was potentiated 100% by heparan sulfate, but not by heparin. Then, we evaluated the interference of heparan sulfate or heparin on in vivo neutrophil migration induced by IL-8. The activity of rat IL-8 (3.5 g/animal) preincubated with heparan sulfate (50 g/animal) or heparin (77 g/animal) was assayed on the rat dorsal air pouch. Contrary to in vitro experiments, heparin, but not heparan sulfate, potentiated the in vivo IL-8 activity two-fold. We investigated the relationship between this observation and that reported by others, that IL-8-induced migration depends on the presence of mast cells, which contain heparin-rich granules. We studied the neutrophil migration induced by IL-8 (3.5 g/animal) into the rat peritoneal cavity depleted of mast cells. Neutrophil migration was reduced by 32% when compared to that observed in normal animals. The response of depleted rats was reconstituted by preincubation of IL-8 with heparin (77 g/animal). These data suggest that heparin released from cytoplasmic granules may be the contribution of mast cells to IL-8-induced neutrophil migration.  相似文献   

8.
9.
10.
Leukotriene B4 binding to human neutrophils   总被引:5,自引:0,他引:5  
[3H] Leukotriene B4 (LTB4) binds concentration dependently to intact human polymorphonuclear leukocytes (PMN's). The binding is saturable, reaches equilibrium in 10 min at 4 degrees C, and is readily reversible. Mathematical modeling analysis reveals biphasic binding of [3H] LTB4 indicating two discrete populations of binding sites. The high affinity binding sites have a dissociation constant of 0.46 X 10(-9)M and Bmax of 1.96 X 10(4) sites per neutrophil; the low affinity binding sites have a dissociation constant of 541 X 10(-9)M and a Bmax of 45.16 X 10(4) sites per neutrophil. Competitive binding experiments with structural analogues of LTB4 demonstrate that the interaction between LTB4 and the binding site is stereospecific, and correlates with the relative biological activity of the analogs. At 25 degrees C [3H] LTB4 is rapidly dissociated from the binding site and metabolized to 20-OH and 20-COOH-LTB4. Purification of neutrophils in the presence of 5-lipoxygenase inhibitors significantly increases specific [3H] LTB4 binding, suggesting that LTB4 is biosynthesized during the purification procedure. These data suggest that stereospecific binding and metabolism of LTB4 in neutrophils are tightly coupled processes.  相似文献   

11.
Leukotriene B(4) is a potent chemoattractant known to be involved mainly in inflammation, immune responses, and host defense against infection, although the exact signaling mechanisms by which it exerts its effects are not well understood. Here we show that exogenous leukotriene B(4) induces reactive oxygen species (ROS) generation via a Rac-dependent pathway, and that stable expression of Rac(N17), a dominant negative Rac1 mutant, completely blocks leukotriene B(4)-induced ROS generation. In addition, leukotriene B(4)-induced ROS generation is selectively blocked by inhibition of ERK or cytosolic phospholipase A(2), but not p38 kinase, which is indicative of its dependence on ERK activation and synthesis of arachidonic acid. Consistent with those findings, leukotriene B(4) Rac-dependently stimulates ERK and cytosolic phospholipase A(2) activity, and transient transfection with plasmid expressing Rac(V12), a constitutively activated Rac1 mutant, also dose-dependently stimulates ERK activity. Our findings suggest that ERK and cytosolic phospholipase A(2) are situated downstream of Rac, and we conclude that Rac, ERK, and cytosolic phospholipase A(2) all play pivotal roles in mediating the ROS generation that appears to be a prerequisite for leukotriene B(4)-induced chemotaxis and cell proliferation.  相似文献   

12.
Leukotriene B4 produces hyperalgesia in humans   总被引:4,自引:0,他引:4  
  相似文献   

13.
Receptor for advanced glycation endproducts (RAGE) is an Ig superfamily cell surface receptor that interacts with a diverse array of ligands associated with inflammatory responses. In this study, we provide evidence demonstrating that RAGE is involved in inflammatory responses in the intestines. We showed that RAGE is expressed in intestinal epithelial cells, primarily concentrated at the lateral membranes close to the apical cell junction complexes. Although RAGE expression was low in epithelium under normal conditions, this protein was up-regulated after treatment with the inflammatory cytokines IFN-gamma and/or TNF-alpha. RAGE expression was also elevated in colon tissue samples from patients with inflammatory bowel diseases. Using in vitro transmigration assays, we found that RAGE mediates neutrophil (polymorphonuclear leukocytes (PMN)) adhesion to, and subsequent migration across, intestinal epithelial monolayers. This activity appears to be mediated by the binding of RAGE to the PMN-specific beta(2) integrin CD11b/CD18. Thus, these results provide a novel mechanism for the regulation of PMN transepithelial migration and may suggest a new therapeutic target for intestinal inflammation.  相似文献   

14.
We examined the role of circulating granulocytes in the pulmonary microvascular response to leukotriene B4 (LTB4) by prior depletion of circulating granulocytes using hydroxyurea. LTB4 (2 micrograms/kg injection followed by infusion of 2 micrograms/kg over 15 min) produced transient increases in pulmonary arterial pressure and pulmonary vascular resistance, indicating that neutrophils were not required for the pulmonary hemodynamic effects of LTB4. Infusion of LTB4 in granulocyte-depleted sheep also resulted in transient increases in pulmonary lymph flow (QL) with no significant change in the lymph-to-plasma protein concentration ratio (L/P), findings similar to those in control animals. In vitro studies indicated that LTB4 (10(-7) or 10(-9) M) produced a transient adherence of neutrophils to cultured pulmonary artery endothelial monolayers. Maximal responses occurred at 10 min after the addition of LTB4 to the endothelial cell-neutrophil coculture system, and the adherence decreased to base line within 60 min. LTB4 infusion in sheep also produced a transient uptake of autologous 111In-oxine-labeled neutrophils. The results indicate that LTB4-mediated increase in pulmonary transvascular protein clearance (QL x L/P) is independent of circulating granulocytes.  相似文献   

15.
Leukotriene B4, C4, D4 and E4 inactivation by hydroxyl radicals   总被引:1,自引:0,他引:1  
Leukotriene B4 chemotactic activity and leukotriene C4, D4 and E4 slow reacting substance activity were rapidly decreased by hydroxyl radicals generated by two different iron-supplemented acetaldehyde-xanthine oxidase systems. At low Fe2+, leukotriene inactivation was inhibited by catalase, superoxide dismutase, mannitol and ethanol, suggesting involvement of hydroxyl radicals generated by the iron-catalyzed interaction of superoxide and H2O2 (Haber-Weiss reaction). Leukotriene inactivation increased at high Fe2+ concentrations, but was no longer inhibitable by superoxide dismutase, suggesting that inactivation resulted from a direct interaction between H2O2 and Fe2+ to form hydroxyl radicals (Fenton reaction). The inactivation of leukotrienes by hydroxyl radicals suggests that oxygen metabolites generated by phagocytes may play a role in modulating leukotriene activity.  相似文献   

16.
Biosynthesis of leukotriene B4 (LTB4) was studied in ten patients with end-stage renal failure undergoing chronic hemodialysis with a cuprophane membrane. As compared to healthy subjects the low basal plasma levels of LTB4 quantified by radioimmunoassay after extraction and purification by HPLC showed no significant difference. The time-course of LTB4 release after contact of the blood with the dialysis membrane without further in vitro stimulation was characterized by a rapid increase by about 500% within the first 10 min, appearing approximately at the same time as the known fall of white blood cell count which reaches its nadir after 20 min. Analysis of further release showed a decline of LTB4 biosynthesis to basal levels at the end of hemodialysis. These results indicate that activation of the 5-lipoxygenase pathway is involved in hemodialysis-associated leukopenia and may contribute to the alterations in neutrophils of patients with chronic dialysis therapy.  相似文献   

17.
Leukotriene B4 induces airway hyperresponsiveness in dogs   总被引:10,自引:0,他引:10  
We studied the effect of leukotriene B4 aerosols on airway responsiveness to inhaled acetylcholine aerosols and on the cellular components and cyclooxygenase metabolites in bronchoalveolar lavage fluid in dogs. Inhalation of leukotriene B4 aerosols had no effect on resting total pulmonary resistance but increased airway responsiveness, an effect that was maximum in 3 h and that returned to control levels within 1 wk. Three hours after leukotriene B4, the number of neutrophils and the concentration of thromboxane B2 recovered in lavage fluid increased markedly. Pretreatment with the thromboxane synthase inhibitor OKY-046 prevented the increases in airway responsiveness and in thromboxane B2 but did not alter neutrophil chemotaxis. Thus we speculate that leukotriene B4 causes neutrophil chemotaxis and release of thromboxane B2, which increases airway responsiveness.  相似文献   

18.
Leukotriene B4 (LTB4) is a potent mediator of pro-inflammatory responses including neutrophil degranulation. Leukotriene B4 dimethylamide has been synthesized and shown to inhibit neutrophil degranulation induced by LTB4. The inhibition required time to develop (~60 secs), and had a KD of circa 2 × 10?7M, and occurred at concentrations where LTB4 dimethylamide had negligible agonist activity.  相似文献   

19.
Leukotriene B4: metabolism and signal transduction   总被引:10,自引:0,他引:10  
Leukotriene B4 (LTB4) is known as one of the most potent chemoattractants and activators of leukocytes and is involved in inflammatory diseases. Enzymes involved in the biosynthesis and metabolism of LTB4 have been cloned, and their properties are well understood. Two G-protein-coupled receptors (BLT1 and BLT2) have been cloned and characterized. BLT1 and BLT2 are high- and low-affinity LTB4 receptors, respectively, and form a gene cluster in human and mouse. In this article recent findings on the metabolism of and the receptors for LTB4 are reviewed. We also discuss briefly a coreceptor role of BLT in HIV infection, and ion channel modification by LTB4.  相似文献   

20.
Cryptococcal capsular Ags induce the production of proinflammatory cytokines in patients with cryptococcal meningitis. Despite this, their cerebrospinal fluid typically contains few neutrophils. Capsular glucuronoxylomannan is generally considered to mediate the inhibition of neutrophil extravasation. In the current study, culture supernatant harvested from the nonglucuronoxylomannan-producing strain CAP67 was found to be as potent as supernatant from wild-type strains in preventing migration. We identified capsular mannoprotein (MP)-4 as the causative agent. Purified MP-4 inhibited migration of neutrophils toward platelet-activating factor, IL-8, and fMLP, probably via a mechanism involving chemoattractant receptor cross-desensitization, as suggested by its direct chemotactic activity. Supporting this hypothesis, MP-4 elicited Ca(2+) transients that were inhibited by preincubation with either fMLP, IL-8, or C5a, but not platelet-activating factor, and vice versa. Moreover, MP-4 strongly decreased the neutrophil surface expression of L-selectin and induced shedding of TNF receptors p55/p75, whereas CD11b/18 increased. Finally, MP-4 was clearly detectable in both serum and cerebrospinal fluid of patients suffering from cryptococcal meningitis. These findings identify MP-4 as a novel capsular Ag prematurely activating neutrophils and desensitizing them toward a chemoattractant challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号