首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Quantifying interactions in DNA microarrays is of central importance for a better understanding of their functioning. Hybridization thermodynamics for nucleic acid strands in aqueous solution can be described by the so-called nearest neighbor model, which estimates the hybridization free energy of a given sequence as a sum of dinucleotide terms. Compared with its solution counterparts, hybridization in DNA microarrays may be hindered due to the presence of a solid surface and of a high density of DNA strands. We present here a study aimed at the determination of hybridization free energies in DNA microarrays. Experiments are performed on custom Agilent slides. The solution contains a single oligonucleotide. The microarray contains spots with a perfect matching (PM) complementary sequence and other spots with one or two mismatches (MM) : in total 1006 different probe spots, each replicated 15 times per microarray. The free energy parameters are directly fitted from microarray data. The experiments demonstrate a clear correlation between hybridization free energies in the microarray and in solution. The experiments are fully consistent with the Langmuir model at low intensities, but show a clear deviation at intermediate (non-saturating) intensities. These results provide new interesting insights for the quantification of molecular interactions in DNA microarrays.  相似文献   

2.

Background  

Although DNA microarray technologies are very powerful for the simultaneous quantitative characterization of thousands of genes, the quality of the obtained experimental data is often far from ideal. The measured microarrays images represent a regular collection of spots, and the intensity of light at each spot is proportional to the DNA copy number or to the expression level of the gene whose DNA clone is spotted. Spot quality control is an essential part of microarray image analysis, which must be carried out at the level of individual spot identification. The problem is difficult to formalize due to the diversity of instrumental and biological factors that can influence the result.  相似文献   

3.
We developed a reliability index named SRED (Spot Reliability Evaluation Score for DNA microarrays) that represents the probability that the calibrated gene expression level from a DNA microarray would be less than a factor of 2 different from that of quantitative real-time polymerase chain reaction assays whose dynamic quantification range is treated statistically to be similar to that of the DNA microarray. To define the SRED score, two parameters, the reproducibility of measurement value and the relative expression value were selected from nine candidate parameters. The SRED score supplies the probability that the expression level in each spot of a microarray is less than a certain-fold different compared to other expression profiling data, such as QRT-PCR. This score was applied to 1,500,000 points of the expression profile in the RIKEN Expression Array Database.  相似文献   

4.
Evaluation of surface chemistries for antibody microarrays   总被引:1,自引:1,他引:0  
Antibody microarrays are an emerging technology that promises to be a powerful tool for the detection of disease biomarkers. The current technology for protein microarrays has been derived primarily from DNA microarrays and is not fully characterized for use with proteins. For example, there are a myriad of surface chemistries that are commercially available for antibody microarrays, but there are no rigorous studies that compare these different surfaces. Therefore, we have used a sandwich enzyme-linked immunosorbent assay (ELISA) microarray platform to analyze 17 different commercially available slide types. Full standard curves were generated for 23 different assays. We found that this approach provides a rigorous and quantitative system for comparing the different slide types based on spot size and morphology, slide noise, spot background, lower limit of detection, and reproducibility. These studies demonstrate that the properties of the slide surface affect the activity of immobilized antibodies and the quality of data produced. Although many slide types produce useful data, glass slides coated with aldehyde silane, poly-l-lysine, or aminosilane (with or without activation with a crosslinker) consistently produce superior results in the sandwich ELISA microarray analyses we performed.  相似文献   

5.
Automatic analysis of DNA microarray images using mathematical morphology   总被引:10,自引:0,他引:10  
MOTIVATION: DNA microarrays are an experimental technology which consists in arrays of thousands of discrete DNA sequences that are printed on glass microscope slides. Image analysis is an important aspect of microarray experiments. The aim of this step is to reduce an image of spots into a table with a measure of the intensity for each spot. Efficient, accurate and automatic analysis of DNA spot images is essential in order to use this technology in laboratory routines. RESULTS: We present an automatic non-supervised set of algorithms for a fast and accurate spot data extraction from DNA microarrays using morphological operators which are robust to both intensity variation and artefacts. The approach can be summarised as follows. Initially, a gridding algorithm yields the automatic segmentation of the microarray image into spot quadrants which are later individually analysed. Then the analysis of the spot quadrant images is achieved in five steps. First, a pre-quantification, the spot size distribution law is calculated. Second, the background noise extraction is performed using a morphological filtering by area. Third, an orthogonal grid provides the first approach to the spot locus. Fourth, the spot segmentation or spot boundaries definition is carried out using the watershed transformation. And fifth, the outline of detected spots allows the signal quantification or spot intensities extraction; in this respect, a noise model has been investigated. The performance of the algorithm has been compared with two packages: ScanAlyze and Genepix, showing its robustness and precision.  相似文献   

6.
The fabrication quality of microarrays significantly influences the accuracy and reproducibility of microarray experiments. In this report, we present a simple and fast quality control (QC) method for spotted oligonucleotide and cDNA microarrays. It employs a nonspecific electrostatic interaction of colloidal gold nanoparticles with the chemical groups of DNA molecules and other biomolecules immobilized on the microarray surface that bear positive or negative charges. An inexpensive flatbed scanner is used to visualize and quantify the binding of cationic gold particles to the anionic DNA probes on the microarray surface. An image analysis software was designed to assess the various parameters of the array spots including spot intensity, shape and array homogeneity, calculate the overall array quality score, and save the detailed array quality report in an Excel file. The gold staining technique is fast and sensitive. It can be completed in 10 min and detect less than 1% of the probe amount commonly recommended for microarrays. Compared to the current microarray QC method that utilizes the hybridization of probes with short random sequence oligonucleotides labeled with fluorophore, our gold staining method requires less time for the analysis, reduces the reagent cost, and eliminates the need for the expensive laser scanner. Biotechnol. Bioeng. 2009; 102: 960–964. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
Motivation: DNA microarrays are a well-known and established technology in biological and pharmaceutical research providing a wealth of information essential for understanding biological processes and aiding drug development. Protein microarrays are quickly emerging as a follow-up technology, which will also begin to experience rapid growth as the challenges in protein to spot methodologies are overcome. Like DNA microarrays, their protein counterparts produce large amounts of data that must be suitably analyzed in order to yield meaningful information that should eventually lead to novel drug targets and biomarkers. Although the statistical management of DNA microarray data has been well described, there is no available report that offers a successful consolidated approach to the analysis of high-throughput protein microarray data. We describe the novel application of a statistical methodology to analyze the data from an immune response profiling assay using human protein microarray with over 5000 proteins on each chip.  相似文献   

8.
9.
Combinatorial image analysis of DNA microarray features   总被引:3,自引:0,他引:3  
MOTIVATION: DNA and protein microarrays have become an established leading-edge technology for large-scale analysis of gene and protein content and activity. Contact-printed microarrays has emerged as a relatively simple and cost effective method of choice but its reliability is especially susceptible to quality of pixel information obtained from digital scans of spotted features in the microarray image. RESULTS: We address the statistical computation requirements for optimizing data acquisition and processing of digital scans. We consider the use of median filters to reduce noise levels in images and top-hat filters to correct for trends in background values. We also consider, as alternative estimators of spot intensity, discs of fixed radius, proportions of histograms and k-means clustering, either with or without a square-root intensity transformation and background subtraction. We identify, using combinatoric procedures, optimal filter and estimator parameters, in achieving consistency among the replicates of a gene on each microarray. Our results, using test data from microarrays of HCMV, indicate that a highly effective approach for improving reliability and quality of microarray data is to apply a 21 by 21 top-hat filter, then estimate spot intensity as the mean of the largest 20% of pixel values in the target region, after a square-root transformation, and corrected for background, by subtracting the mean of the smallest 70% of pixel values. AVAILABILITY: Fortran90 subroutines implementing these methods are available from the authors, or at http://www.bioss.ac.uk/~chris.  相似文献   

10.
Transfected cell microarrays, arrays of mammalian cells expressing defined genes, offer enormous potential for the development of high-throughput cell-based detection technologies to monitor the presence of biological agents or environmental toxicants. The signals generated from these arrays are intimately linked to the efficiency of DNA uptake by the cells located on the micrometer-sized spots. However, quantitative analysis of the transfection efficiency on cellular microarrays has been limited. Further, little regard has been given to the role of the substrate in influencing the transfection efficiency of mammalian cells on transfected microarrays. In this report, we have quantified the transfection efficiency of mammalian cells on different microscope slide substrates. Using commercially available microscope slides bearing substrates that mediate cellular attachment (polystyrene, 3-aminopropylsilane, and poly-L-lysine), we have demonstrated the role of substrate hydrophobicity in determining the resulting spot size and the local DNA concentration when plasmid DNA is dispensed in a printing buffer containing gelatin and sucrose using a noncontact microarray printer. The mean spot diameter varied inversely with the substrate water contact angle (r2 = 0.970). Further, the relative local plasmid DNA concentration was a function of the mean spot diameter. The deposition of Rhodamine Red-labeled plasmid DNA revealed that, across all substrates, the average fluorescence signal within the spots varied inversely with the mean spot diameter (r2 = 0.976). The transfection efficiency of HEK 293T/17 cells varied in accord with the mean spot diameter, demonstrating that the uptake of DNA was a function of the local DNA concentration on each substrate.  相似文献   

11.
As the topological properties of each spot in DNA microarray images may vary from one another, we employed granulometries to understand the shape-size content contributed due to a significant intensity value within a spot. Analysis was performed on the microarray image that consisted of 240 spots by using concepts from mathematical morphology. In order to find out indices for each spot and to further classify them, we adopted morphological multiscale openings, which provided microarrays at multiple scales. Successive opened microarrays were subtracted to identify the protrusions that were smaller than the size of structuring element. Spot-wise details, in terms of probability of these observed protrusions,were computed by placing a regularly spaced grid on microarray such that each spot was centered in each grid. Based on the probability of size distribution functions of these protrusions isolated at each level, we estimated the mean size and texture index for each spot. With these characteristics, we classified the spots in a microarray image into bright and dull categories through pattern spectrum and shape-size complexity measures. These segregated spots can be compared with those of hybridization levels.  相似文献   

12.
A facile and efficient method for direct immobilization of phosphorylated oligonucleotides on an epoxy-activated glass surface is described. The new immobilization strategy has been analyzed for its performance in DNA microarray under both microwave and thermal conditions. It reflects high immobilization efficiency ( approximately 23%), and signal-to-noise ratio ( approximately 98) and resulted in high hybridization efficiency ( approximately 36%) in comparison to those obtained with standard methods, viz., NTMTA ( approximately 9.76%) and epoxide-amine ( approximately 9.82%). The probes immobilized through the new strategy were found to be heat-stable, since the performance of microarray decreased by only approximately 7% after subjecting it to 20 PCR-like heat cycles, suggesting that the chemistry could be used in integrated PCR/microarray devices. The immobilization of probes following the proposed chemistry resulted in spots of superior quality in terms of spot morphology, spot homogeneity, and signal reproducibility. The constructed microarrays have been successfully used for the discrimination of nucleotide mismatches. In conclusion, these features make the new immobilization strategy ideal for facile, efficient, and cost-effective manufacturing of DNA microarrays.  相似文献   

13.
A magnetoresistive biosensing platform based on a single magnetic tunnel junction (MTJ) scanning probe and DNA microarrays labeled with magnetic particles has been developed to provide an inexpensive, sensitive and reliable detection of DNA. The biosensing platform was demonstrated on a DNA microarray assay for quantifying bacteria capable of degrading methyl tertiary butyl ether (MTBE), where concentrations as low as 10 pM were detectable. Synthetic probe bacterial DNA was immobilized on a microarray glass slide surface, hybridized with the 48 base pair long biotinylated target DNA and subsequently incubated with streptavidin-coated 2.8 μm diameter magnetic particles. The biosensing platform then makes use of a micron-sized MTJ sensor that was raster scanned across a 3 mm by 5 mm glass slide area to capture the stray magnetic field from the tagged DNA and extract two dimensional magnetic field images of the microarray. The magnetic field output is then averaged over each 100 μm diameter DNA array spot to extract the magnetic spot intensity, analogous to the fluorescence spot intensity used in conventional optical scanners. The magnetic scanning result is compared with results from a commercial laser scanner and particle coverage optical counting to demonstrate the dynamic range and linear sensitivity of the biosensing platform as a potentially inexpensive, sensitive and portable alternative for DNA microarray detection for field applications.  相似文献   

14.
Food-borne pathogens are a major health problem. The large and diverse number of microbial pathogens and their virulence factors has fueled interest in technologies capable of detecting multiple pathogens and multiple virulence factors simultaneously. Some of these pathogens and their toxins have potential use as bioweapons. DNA microarray technology allows the simultaneous analysis of thousands of sequences of DNA in a relatively short time, making it appropriate for biodefense and for public health uses. This paper describes methods for using DNA microarrays to detect and analyze microbial pathogens. The FDA-1 microarray was developed for the simultaneous detection of several food-borne pathogens and their virulence factors including Listeria spp., Campylobacter spp., Staphylococcus aureus enterotoxin genes and Clostridium perfringens toxin genes. Three elements were incorporated to increase confidence in the microarray detection system: redundancy of genes, redundancy of oligonucleotide probes (oligoprobes) for a specific gene, and quality control oligoprobes to monitor array spotting and target DNA hybridization. These elements enhance the reliability of detection and reduce the chance of erroneous results due to the genetic variability of microbes or technical problems with the microarray. The results presented demonstrate the potential of oligonucleotide microarrays for detection of environmental and biodefense relevant microbial pathogens.  相似文献   

15.
High-throughput live-cell microarray technologies that facilitate combinatorial screening of genes and RNA interference (RNAi) would be invaluable in the identification of key gene expression profiles involved in complex cellular behaviors. Each spot on such a microarray can comprise a unique combination of genes or RNAi packaged into gene delivery vectors. Live target cells seeded on top of the microarrays would express the combination of genetic factors, potentially leading to phenotypic changes within cells. Here, we investigate the feasibility of using adeno-associated virus (AAV) as a gene delivery agent for such live-cell genetic microarrays. A robotic spotter was used to deposit AAV onto gamma-amino propyl silane, amine silane, or nitrocellulose-coated glass slides. Virus deposition and reverse transduction of target cells were found to be surface coating-dependent with nitrocellulose coating yielding the best AAV deposition, while also producing discrete islands of highly transduced cells. Our results demonstrate the feasibility of using nitrocellulose-coated surfaces for the development of AAV-based genetic microarrays.  相似文献   

16.
DNA microarrays have emerged as a powerful tool for pathogen detection.1-5 For instance, many examples of the ability to type and subtype influenza virus have been demonstrated.6-11 The identification and subtyping of influenza on DNA microarrays has applications in both public health and the clinic for early detection, rapid intervention, and minimizing the impact of an influenza pandemic. Traditional fluorescence is currently the most commonly used microarray detection method. However, as microarray technology progresses towards clinical use,1 replacing expensive instrumentation with low cost detection technology exhibiting similar performance characteristics to fluorescence will make microarray assays more attractive and cost-effective.The ampliPHOX colorimetric detection technology is intended for research applications, and has a limit of detection within one order of magnitude of traditional fluorescence11, with a main advantage being an approximate ten-fold lower instrument cost compared to the confocal microarray scanners required for fluorescence microarray detection. Another advantage is the compact size of the instrument which allows for portability and flexibility, unlike traditional fluorescence instruments. Because the polymerization technology is not as inherently linear as fluorescence detection, however, it is best suited for lower density microarray applications in which a yes/no answer for the presence of a certain sequence is desired, such as for pathogen detection arrays. Currently the maximum spot density compatible with ampliPHOX detection is ˜1800 spots/array. Because of the spot density limitations, higher density microarrays are not suitable for ampliPHOX detection.Here, we present ampliPHOX colorimetric detection technology as a method of signal amplification on a low density microarray developed for the detection and characterization of influenza viruses (FluChip). Although this protocol uses the FluChip (a DNA microarray) as one specific application of ampliPHOX detection, any microarray incorporating biotinylated target can be labeled and detected in a similar manner. The microarray design and biotinylation of the target to be captured are the responsibility of the user. Once the biotinylated target has been captured on the array, ampliPHOX detection can be performed by first tagging the array with a streptavidin-label conjugate (ampliTAG). Upon light exposure using the ampliPHOX Reader instrument, polymerization of a monomer solution (ampliPHY) occurs only in regions containing ampliTAG-labeled targets. The polymer formed can be subsequently stained with a non-toxic solution to improve visual contrast, followed by imaging and analysis using a simple software package (ampliVIEW). The entire FluChip assay from un-extracted sample to result can be performed in about 6 hours, and the ampliPHOX detection steps described above can be completed in about 30 min. Download video file.(61M, mov)  相似文献   

17.
Microarray technology is a useful tool for nucleic acid detection and has been widely used in biology and related research fields. However, the procedure is labor intensive and time consuming. Microfluidic chip-based microarrays save time with better performance, but the low spot density and probe number limit its applications. To develop high performance microarrays with high spot density within a microchannel, a method is reported here for preparing microarrays in a capillary by generating probe droplet arrays. The probes in droplets are immobilized onto the inner wall of the capillary to form a one-dimensional probe array, and then a sample solution is introduced to hybridize with the probe array. The effect of the capillary's inner diameter was evaluated to realize a high-density probe array. The processes of array generation and probe immobilization were studied to avoid possible cross contamination. The background from probe immobilization during the array generation and incubation was quantified to assure sensitivity. Multiple sample detection was also demonstrated within one capillary. The capillary based microarray assay had high spot density, easy fabrication, fast detection, high sensitivity and multiple sample capacity.  相似文献   

18.
Previous studies have shown that a functionalized viral nanoparticle can be used as a fluorescent signal-generating element and enhance detection sensitivity for immunoassays and low density microarrays. In this study, we further tested this ability in commercial DNA microarrays, including Affymetrix high density resequencing microarray. Optimum conditions for NeutrAvidin and dye coupling to a double-cysteine mutant of cowpea mosaic virus (CPMV) were found to be comparable to the commonly used streptavidin-phycoerythrin (SAPE) for high density resequencing microarray. A 3-fold signal enhancement in comparison to Cy5-dCTP controls was obtained when using nanoparticles on control scorecard expression microarrays. Hybridization results from commercially available 8000 rat expression arrays indicate an increment of 14% on the detected features when the virus complex was used as the staining reagent in comparison to Cy5-dCTP controls. The current work shows the utility of the CPMV-dye nanoparticles as a detection reagent in well-established detection platforms.  相似文献   

19.
DNA microarrays printed with quill pins exhibit significant variation in probe DNA spots. Interspot variations and nonuniform distribution of probe within spots are major sources of experimental uncertainty in microarray analysis. To gain better insight into the sources of variation, we analyzed 450 consecutive depositions printed at relative humidities between 40 and 80% using three print buffers. Increasing relative humidity improved printing performance by delaying pin failure but did not reduce the variability in spot characteristics. Adding either betaine or dimethyl sulfoxide (DMSO) to the print buffer also improved quill pin performance. Least interspot variation was observed with the DMSO additive printed at 80% relative humidity, but this additive also resulted in the greatest intraspot variation. Least intraspot variation was observed with 1.5M betaine printed at 60% relative humidity, but these conditions produced microarrays with high interspot variability. Evaporation of printing solution from the quill reservoir appeared to be the primary cause of interspot and intraspot variations. Our studies indicate that relative humidity and printing solution additives reduce evaporation. Based on the spot variability requirements for a particular application, humidity and additives may be chosen to optimize either inter- or intraspot variability.  相似文献   

20.
As a first step toward building a comprehensive microarray, two low density DNA microarrays were constructed and evaluated for the accurate detection of wastewater pathogens. The first one involved the direct hybridization of wastewater microbial genomic DNA to the functional gene probes while the second involved PCR amplification of 23S ribosomal DNA. The genomic DNA microarray employed 10 functional genes as detection targets. Sensitivity of the microarray was determined to be approximately 1.0 microg of Esherichia coli genomic DNA, or 2 x 10(8) copies of the target gene, and only E. coli DNA was detected with the microarray assay using municipal raw sewage. Sensitivity of the microarray was enhanced approximately by 6 orders of magnitude when the target 23S rRNA gene sequences were PCR amplified with a novel universal primer set and allowed hybridization to 24 species-specific oligonucleotide probes. The minimum detection limit was estimated to be about 100 fg of E. coli genomic DNA or 1.4 x 10(2) copies of the 23S rRNA gene. The PCR amplified DNA microarray successfully detected multiple bacterial pathogens in wastewater. As a parallel study to verify efficiency of the DNA microarray, a real-time quantitative PCR assay was also developed based on the fluorescent TaqMan probes (Applied Biosystems).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号