首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Gram-positive bacteria, catabolite control protein A (CcpA)-mediated catabolite repression or activation regulates not only the expression of a great number of catabolic operons, but also the synthesis of enzymes of central metabolic pathways. We found that a constituent of the Bacillus subtilis respiratory chain, the small cytochrome c550 encoded by the cccA gene, was also submitted to catabolite repression. Similar to most catabolite-repressed genes and operons, the Bacillus subtilis cccA gene contains a potential catabolite response element cre, an operator site recognized by CcpA. The presumed cre overlaps the -35 region of the cccA promoter. Strains carrying a cccA'-IacZ fusion formed blue colonies when grown on rich solid medium, whereas white colonies were obtained when glucose was present. beta-Galactosidase assays with cells grown in rich medium confirmed the repressive effect of glucose on cccA'-lacZ expression. Introduction of a ccpA or hprK mutation or of a mutation affecting the presumed cccA cre relieved the repressive effect of glucose during late log phase. An additional glucose repression mechanism was activated during stationary phase, which was not relieved by the ccpA, hprK or cre mutations. An interaction of the repressor/corepressor complex (CcpA/seryl-phosphorylated HPr (P-Ser-HPr)) with the cccA cre could be demonstrated by gel shift experiments. By contrast, a DNA fragment carrying mutations in the presumed cccA cre was barely shifted by the CcpA/P-Ser-HPr complex. In footprinting experiments, the region corresponding to the presumed cccA cre was specifically protected in the presence of the CcpA/P-Ser-HPr complex.  相似文献   

2.
In order to identify inhibitors of various drug-resistant forms of the human immunodeficiency virus protease (HIV PR), we have designed and synthesized pseudopeptide libraries with a general structure Z-mimetic-Aa1-Aa2-NH2. Five different chemistries for peptide bond replacement have been employed and the resulting five individual sublibraries tested with the HIV PR and its drug-resistant mutants. Each mutant contains amino acid substitutions that have previously been shown to be associated with resistance to protease inhibitors, including Ritonavir, Indinavir, and Saquinavir. We have mapped the subsite preferences of resistant HIV PR species with the aim of selecting a pluripotent pharmaceutical lead. All of the enzyme species in this study manifest clear preference for an L-Glu residue in the P2' position. Slight, but significant, differences in P3' subsite specificity among individual resistant PR species have been documented. We have identified three compounds, combining the most favorable features of the inhibitor array, that exhibit low-nanomolar or picomolar Ki values for all three mutant PR species tested.  相似文献   

3.
Bacillus subtilis expresses a cytochrome c-550nm that participates in respiratory electron transfer and is an integral membrane protein. Analysis of the B. subtilis cytochrome c-550nm amino acid sequence predicts a single N-terminal transmembrane helix attached to a water-soluble heme binding domain [C. von Wachenfeldt and L. Hederstedt (1990) J. Biol. Chem. 265, 13939-13948]. We have purified cytochrome c-550nm from wild-type B. subtilis and B. subtilis transformed with the shuttle vector pHP13 containing the gene for B. subtilis cytochrome c-550nm (cccA). In B. subtilis transformed with pHP13/cccA there is better than eightfold more membrane-bound cytochrome c-550nm than in wild-type B. subtilis. The overexpressed cytochrome c-550nm can be purified by chromatography on hydroxylapatite and Q-Sepharose media. A six-histidine tag has been added to the C-terminus of cytochrome c-550nm from B. subtilis as a further aid for purification. This strain produces cytochrome c-550nm to a level fourfold greater than wild type and allows for one-step purification using metal affinity chromatography. UV-Vis spectroscopy detects no change in the heme C spectrum due to the addition of six histidines. Neither form of B. subtilis cytochrome c-550nm is stable in its reduced state in aerated buffer, unless EDTA is added. The two forms, wild-type and his-tagged, of cytochromes c have similar midpoint redox potentials of 195 and 185 mV, respectively, and are equally good substrates for B. subtilis cytochrome c oxidase. We conclude that the addition of the histidine tag eases the purification of cytochrome c-550nm from B. subtilis plasma membranes and that the additional metal binding site does not compromise the stability or functional properties of the protein.  相似文献   

4.
5.
6.
Cytochrome c-550 has been purified from several cyanobacteria. It is a low-potential, auto-oxidizable cytochrome. This cytochrome should not be confused with a degradation product of cytochrome ? which may be formed during the isolation of the latter protein. Cytochromes c-550 are distinctive in size, amino-acid composition and N-terminal amino-acid sequence.  相似文献   

7.
8.
9.
A reassessment of the structure of Paracoccus cytochrome c-550   总被引:3,自引:0,他引:3  
An amino acid sequence and a three-dimensional structure of cytochrome c-550 from the facultatively denitrifying aerobic bacterium Paracoccus denitrificans have been reported (Timkovich et al., 1976; Timkovich &; Dickerson, 1976). The amino acid sequence showed considerable similarity to Rhodospirillaceae (purple phototrophic bacterial) cytochrome c2, but also had some unexpected features. We have reexamined the amino acid sequence and have found five discrepancies. The molecule contains an additional tryptophan residue, which was not detected in either the 2.5 Å crystallographic analysis or the original sequence investigation.  相似文献   

10.
R Timkovich  M S Cork  P V Taylor 《Biochemistry》1984,23(15):3526-3533
The 1H NMR spectra of ferri- and ferro-cytochrome c-550 from Paracoccus denitrificans (ATCC 13543) have been investigated at 300 MHz. The ferri-cytochrome c-550 shows hyperfine-shifted heme methyl resonances at 29.90, 29.10, 16.70, and 12.95 ppm and a ligand methionyl methyl resonance at -15.80 ppm (pH 8 and 23 degrees C). Four pH-linked structural transitions were detected in spectra taken as a function of pH. The transitions have been interpreted as loss of the histidine heme ligand (pK less than or equal to 3), ionization of a buried heme propionate (pK = 6.3 +/- 0.2), displacement of the methionine heme ligand by a lysyl amino group (pK congruent to 10.5), and loss of the lysyl ligand (pK greater than or equal to 11.3). The temperature behavior of hyperfine-shifted resonances was determined. Two heme methyl resonances (at 16.70 and 12.95 ppm) showed downfield hyperfine shifts with increasing temperature. The cyanoferricytochrome had methyl resonances at 23.3, 20.1, and 19.4 ppm. NMR spectroscopy did not detect the formation of a complex with azide. The second-order rate constant for electron transfer between ferric and ferrous forms was determined to be 1.6 X 10(4) M-1 s-1. Heme proton resonances were assigned in both oxidation states by cross-saturation and nuclear Overhauser enhancement experiments. Spin-coupling patterns in the aromatic region of the ferro-cytochrome spectrum were investigated.  相似文献   

11.
The complete amino acid sequence of Nitrobacter agilis cytochrome c-550   总被引:4,自引:0,他引:4  
The amino acid sequence of cytochrome c-550 from the chemoautotroph, Nitrobacter agilis, was completed by using solid-phase sequencing and conventional procedures. The cytochrome was composed of 109 amino acid residues and its molecular weight was calculated to be 12375 including haem c. The cytochrome was homologous to eukaryotic cytochromes c and some photosynthetic bacterial cytochromes c2. In particular, its primary structure was very similar to that of Rhodopseudomonas viridis cytochrome c2. Some of its properties were compared with those of other cytochromes c on the basis of the primary structure.  相似文献   

12.
Next to their natural electron transport capacities, c-type cytochromes possess low peroxidase and cytochrome P-450 activities in the presence of hydrogen peroxide. These catalytic properties, in combination with their structural robustness and covalently bound cofactor make cytochromes c potentially useful peroxidase mimics. This study reports on the peroxidase activity of cytochrome c-550 from Paracoccus versutus and the loss of this activity in presence of H2O2. The rate-determining step in the peroxidase reaction of cytochrome c-550 is the formation of a reactive intermediate, following binding of peroxide to the haem iron. The reaction rate is very low compared to horseradish peroxidase (approximately one millionth), because of the poor accessibility of the haem iron for H2O2, and the lack of a base catalyst such as the distal His of the peroxidases. This is corroborated by the linear dependence of the reaction rate on the peroxide concentration up to at least 1 M H2O2. Steady-state conversion of a reducing substrate, guaiacol, is preceded by an activation phase, which is ascribed to the build-up of amino-acid radicals on the protein. The inactivation kinetics in the absence of reducing substrate are mono-exponential and shown to be concurrent with haem degradation up to 25 mM H2O2 (pH 8.0). At still higher peroxide concentrations, inactivation kinetics are biphasic, as a result of a remarkable protective effect of H2O2, involving the formation of superoxide and ferrocytochrome c-550.  相似文献   

13.
A moderately thermostable esterase from Geobacillus stearothermophilus (BsteE) and its homolog from Bacillus subtilis (BsubE) show a high structural similarity with more than 95 % homology and 74 % amino acid identity. Interestingly, their thermal stability differs significantly by 30 °C in their melting temperature. In order to identify the positions that are responsible for this difference, most of the flexible amino acids assumed to confer instability were found to be in the cap region. For this reason, a 30 amino acid long cap domain fragment containing ten differing positions derived from BsteE was incorporated into the homologous gene encoding for the more labile BsubE by spliced overlap-extension PCR. The melting temperature of the two wild-type esterases and the mutant was evaluated by circular dichroism spectroscopy, while the kinetic parameters and the stability were determined with a photometric assay. The cap domain mutant maintained its activity, with a catalytic efficiency more similar to BsteE, while it exhibited an increase of the melting temperature by 4 °C compared to BsubE. Additional point mutations based on the differences of the parent enzymes gave a further increase of the thermostability up to 11 °C compared to BsubE; however, a significant reduction in activity was observed.  相似文献   

14.
15.
Alanine racemase activity was investigated in Bacillus subtilis. A putative second alanine racemase gene (yncD) was cloned in parallel with the previously identified alanine racemase gene, dal. Each of the B. subtilis genes, dal and yncD complemented the Escherichia coli Alr- DadX- double mutant alanine auxotrophic strain MB2159 in vivo, restoring the prototrophic phenotype. Alanine racemase activity was also detected in vitro in cell-free extracts prepared from cultures of E. coli MB2159 harboring plasmids expressing either of the cloned B. subtilis genes and preliminary characterization of enzyme activity is presented.  相似文献   

16.
Summary Xylanase was produced with Bacillus subtilis(pJX18), constructed previously, which contains Clostridium thermocellum xylanase gene expressing with a strong Bacillus promoter. The enzyme hydrolyzed oat spelt xylan to mostly xylobiose and xylotriose which are preferred for industrial applications. The optimal temperature and pH for the activity of this enzyme were 60°C and 5.4, respectively, with moderate stability under these conditions.  相似文献   

17.
Pant K  Bilwes AM  Adak S  Stuehr DJ  Crane BR 《Biochemistry》2002,41(37):11071-11079
Eukaryotic nitric oxide synthases (NOSs) produce nitric oxide to mediate intercellular signaling and protect against pathogens. Recently, proteins homologous to mammalian NOS oxygenase domains have been found in prokaryotes and one from Bacillus subtilis (bsNOS) has been demonstrated to produce nitric oxide [Adak, S., Aulak, K. S., and Stuehr, D. J. (2002) J. Biol. Chem. 277, 16167-16171]. We present structures of bsNOS complexed with the active cofactor tetrahydrofolate and the substrate L-arginine (L-Arg) or the intermediate N(omega)-hydroxy-L-arginine (NHA) to 1.9 or 2.2 A resolution, respectively. The bsNOS structure is similar to those of the mammalian NOS oxygenase domains (mNOS(ox)) except for the absence of an N-terminal beta-hairpin hook and zinc-binding region that interact with pterin and stabilize the mNOS(ox) dimer. Changes in patterns of residue conservation between bacterial and mammalian NOSs correlate to different binding modes for pterin side chains. Residue conservation on a surface patch surrounding an exposed heme edge indicates a likely interaction site for reductase proteins in all NOSs. The heme pockets of bsNOS and mNOS(ox) recognize L-Arg and NHA similarly, although a change from Val to Ile beside the substrate guanidinium may explain the 10-20-fold slower dissociation of product NO from the bacterial enzyme. Overall, these structures suggest that bsNOS functions naturally to produce nitrogen oxides from L-Arg and NHA in a pterin-dependent manner, but that the regulation and purpose of NO production by NOS may be quite different in B. subtilis than in mammals.  相似文献   

18.
19.
B. subtilis phage rho 11s codes for a multispecific DNA methyltransferase (Mtase) which methylates cytosine within the sequences GGCC and GAGCTC. The Mtase gene of rho 11s was isolated and sequenced. It has 1509 bp, corresponding to 503 amino acids (aa). The enzyme's Mr of 57.2 kd predicted from the nucleotide sequence was verified by direct Mr determinations of the Mtase. A comparison of the aa sequence of the rho 11s Mtase with those of related phages SPR and phi 3%, which differ in their methylation potential, revealed generalities in the building plan of such enzymes. At least 70% of the aa of each enzyme are contained in two regions of 243 and 109 aa at the N and C termini respectively, which are highly conserved among the three enzymes. In each enzyme, variable sequences separate the conserved regions. Variability is generated through the single or multiple use of related and unrelated sequence motifs. We propose that the recognition of those DNA target sequences, which are unique for each of the three enzymes, is determined by these variable regions. Evolutionary relationships between the three enzymes are discussed.  相似文献   

20.
In Bacillus subtilis , the yoxA and dacC genes were proposed to form an operon. The yoxA gene was overexpressed in Escherichia coli and its product fused to a polyhistidine tag was purified. An aldose-1-epimerase or mutarotase activity was measured with the YoxA protein that we propose to rename as GalM by analogy with its counterpart in E. coli . The peptide d -Glu-δ- m -A2pm- d -Ala- m -A2pm- d -Ala mimicking the B. subtilis and E. coli interpeptide bridge was synthesized and incubated with the purified dacC product, the PBP4a. A clear dd -endopeptidase activity was obtained with this penicillin-binding protein, or PBP. The possible role of this class of PBP, present in almost all bacteria, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号