首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of S-(4-bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, with the 3-3 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25 degrees C results in a time-dependent inactivation of the enzyme. The kobs exhibits a nonlinear dependence on S-BDB-G concentration from 50 to 900 microM, with a kmax of 0.073 min-1 and KI = 120 microM. The addition of 5 mM S-hexylglutathione, a competitive inhibitor with respect to glutathione, completely protects against inactivation by S-BDB-G. About 2.0 mol of [3H]S-BDB-G/mol of enzyme subunit is incorporated concomitant with 100% inactivation, whereas only 0.96 mol of reagent/mol subunit is incorporated in the presence of S-hexylglutathione when activity is fully retained. Modified enzyme, prepared by incubating glutathione S-transferase with [3H]S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with NaBH4, reacted with N-ethylmaleimide, and digested with trypsin. Analysis of the tryptic digests, fractionated by reverse-phase high-performance liquid chromatography, revealed Tyr115 as the amino acid whose reaction with S-BDB-G correlates with inactivation. Examination of the stability of S-(4-bromo-2,3-dioxobutyl)glutathione and modified enzyme in the absence and presence of dithiothreitol and under acidic conditions suggests that for stable linkage to peptides, the carbonyl moieties of the reagent should be reduced immediately after modification of a protein. Comparison of results from the 4-4 and 3-3 isoenzymes of rat liver glutathione S-transferase (both of the mu gene class) indicates: the 4-4 isoenzyme exhibits a greater affinity for S-BDB-G; Cys86 is labeled by [3H]S-BDB-G in both isoenzymes but is nonessential for activity; in the 3-3 isoenzyme, Cys86 is more accessible to S-BDB-G; and Tyr115 is an important residue in the hydrophobic binding site of both enzymes.  相似文献   

2.
R M Katusz  R F Colman 《Biochemistry》1991,30(47):11230-11238
S-(4-Bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, has been synthesized and characterized by UV spectroscopy and thin-layer chromatography, as well as by bromide and primary amine analysis. Incubation of S-BDB-G (200 microM) with the 4-4 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25 degrees C results in a time-dependent inactivation of the enzyme. The kobs exhibits a nonlinear dependence on S-BDB-G concentration from 50 to 1000 microM, with a kmax of 0.078 min-1 and K1 = 66 microM. The addition of 5 mM S-hexylglutathione, a competitive inhibitor with respect to glutathione, completely protects against inactivation by S-BDB-G. About 1.3 mol of [3H]S-BDB-G/mol of enzyme subunit is incorporated concomitant with 100% inactivation, whereas only 0.48 mol of reagent/mol of subunit is incorporated in the presence of S-hexylglutathione when activity is fully retained. Modified enzyme, prepared by incubating glutathione S-transferase with [3H]S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with NaBH4, carboxymethylated, and digested with trypsin. The tryptic digest was fractionated by reverse-phase high-performance liquid chromatography. Two radioactive peptides were identified: Lys82-His-Asn-Leu-X-Gly-Glu-Thr-Glu-Glu-Glu-Arg93, in which X is modified Cys86, and Leu109-Gln-Leu-Ala-Met-CmCys-Y-Ser-Pro-Asp-Phe-Glu-Arg121 , in which Y is modified Tyr115. Only the Lys82-Arg93 peptide was modified in the presence of S-hexylglutathione when the enzyme retained full activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Reaction of rat liver glutathione S-transferase, isozyme 1-1, with 4-(fluorosulfonyl)benzoic acid (4-FSB), a xenobiotic substrate analogue, results in a time-dependent inactivation of the enzyme to a final value of 35% of its original activity when assayed at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The rate of inactivation exhibits a nonlinear dependence on the concentration of 4-FSB from 0.25 mM to 9 mM, characterized by a KI of 0.78 mM and kmax of 0.011 min-1. S-Hexylglutathione or the xenobiotic substrate analogue, 2,4-dinitrophenol, protects against inactivation of the enzyme by 4-FSB, whereas S-methylglutathione has little effect on the reaction. These experiments indicate that reaction occurs within the active site of the enzyme, probably in the binding site of the xenobiotic substrate, close to the glutathione binding site. Incorporation of [3,5-3H]-4-FSB into the enzyme in the absence and presence of S-hexylglutathione suggests that modification of one residue is responsible for the partial loss of enzyme activity. Tyr 8 and Cys 17 are shown to be the reaction targets of 4-FSB, but only Tyr 8 is protected against 4-FSB by S-hexylglutathione. DTT regenerates cysteine from the reaction product of cysteine and 4-FSB, but does not reactivate the enzyme. These results show that modification of Tyr 8 by 4-FSB causes the partial inactivation of the enzyme. The Michaelis constants for various substrates are not changed by the modification of the enzyme. The pH dependence of the enzyme-catalyzed reaction of glutathione with CDNB for the modified enzyme, as compared with the native enzyme, reveals an increase of about 0.9 in the apparent pKa, which has been interpreted as representing the ionization of enzyme-bound glutathione; however, this pKa of about 7.4 for modified enzyme remains far below the pK of 9.1 for the -SH of free glutathione. Previously, it was considered that Tyr 8 was essential for GST catalysis. In contrast, we conclude that Tyr 8 facilitates the ionization of the thiol group of glutathione bound to glutathione S-transferase, but is not required for enzyme activity.  相似文献   

4.
Glutathionyl S-[4-(succinimidyl)benzophenone] (GS-Succ-BP), an analogue of the product of glutathione and electrophilic substrate, acts as a photoaffinity label of dimeric rat liver glutathione S-transferase (GST), isoenzyme 1-1. A time-dependent loss of enzyme activity is observed upon irradiation of the enzyme with long wavelength UV light in the presence of the reagent. The initial rate of inactivation exhibits nonlinear dependence on the concentration of the reagent, characterized by an apparent dissociation constant of the enzyme-reagent complex (K(R)) of 99 +/- 2 microM and k(max) of 0.082 +/- 0.005 min(-1). Protection against this inactivation is provided by the electrophilic substrate (ethacrynic acid), electrophilic substrate analogue (dinitrophenol), and product analogues (S-hexylglutathione and p-nitrobenzylglutathione) but not by steroids (Delta(5)-androstene-3,17-dione and 17beta-estradiol-3, 17-disulfate). These results suggest that GS-Succ-BP binds and reacts with the enzyme within the xenobiotic substrate binding site, and this reaction site is distinct from the substrate and nonsubstrate steroid binding sites of the enzyme. About 1 mol of reagent is incorporated into 1 mol of enzyme dimer when the enzyme is completely inactivated. Met-208 is the only amino acid target of the reagent, and modification of this residue in one enzyme subunit of the GST 1-1 dimer completely abolishes the enzyme activity of both subunits. In order to evaluate the role of subunit interactions in the Alpha class glutathione S-transferases, inactive GS-Succ-BP-modified GST 1-1 was mixed with unlabeled, active GST 2-2. The enzyme subunits were dissociated in dilute trifluoroacetic acid and then renatured at pH 7.8 and separated by chromatofocusing into GST 1-1, 1-2, and 2-2. The specific activities of the heterodimer toward several substrates indicate that the loss of catalytic activity in the unmodified subunit of the modified GST 1-1 is the indirect result of the interaction between the two enzyme subunits and that this subunit interaction is absent in the heterodimer GST 1-2.  相似文献   

5.
Rat liver glutathione S-transferase, isozyme 1-1, catalyzes the glutathione-dependent isomerization of Delta(5)-androstene-3,17-dione and also binds steroid sulfates at a nonsubstrate inhibitory steroid site. 17beta-Iodoacetoxy-estradiol-3-sulfate, a reactive steroid analogue, produces a time-dependent inactivation of this glutathione S-transferase to a limit of 60% residual activity. The rate constant for inactivation (k(obs)) exhibits a nonlinear dependence on reagent concentration with K(I) = 71 microm and k(max) = 0.0133 min(-1). Complete protection against inactivation is provided by 17beta-estradiol-3,17-disulfate, whereas Delta5-androstene-3,17-dione and S-methylglutathione have little effect on k(obs). These results indicate that 17beta-iodoacetoxy-estradiol-3-sulfate reacts as an affinity label of the nonsubstrate steroid site rather than of the substrate sites occupied by Delta5-androstene-3,17-dione or glutathione. Loss of activity occurs concomitant with incorporation of about 1 mol 14C-labeled reagent/mol enzyme dimer when the enzyme is maximally inactivated. Isolation of the labeled peptide from the chymotryptic digest shows that Cys(17) is the only enzymic amino acid modified. Covalent modification of Cys(17) by 17beta-iodoacetoxy-estradiol-3-sulfate on subunit A prevents reaction of the steroid analogue with subunit B. These results and examination of the crystal structure of the enzyme suggest that the interaction between the two subunits of glutathione S-transferase 1-1, and the electrostatic attraction between the 3-sulfate of the reagent and Arg(14) of subunit B, are important in binding steroid sulfates at the nonsubstrate steroid binding site and in determining the specificity of this affinity label.  相似文献   

6.
Monobromobimane (mBBr) is a substrate of both mu- and alpha-class rat liver glutathione S-transferases, with Km values of 0.63 microM and 4.9 microM for the mu-class isozymes 3-3 and 4-4, respectively, and 26 microM for the alpha-class isozymes 1-1 and 2-2. In the absence of substrate glutathione, mBBr acts as an affinity label of the 1-1 as well as mu-class isozymes, but not of the alpha-class 2-2 isozyme. Incubation of rat liver isozyme 1-1 with mBBr at pH 7.5 and 25 degrees C results in a time-dependent inactivation of the enzyme but at a slower (threefold) rate than for reactions with the mu-class isozyme 3-3 and 4-4. The rate of inactivation of 1-1 isozyme by mBBr is not decreased but, rather, is slightly enhanced by S-methyl glutathione. In contrast, 17 beta-estradiol-3,17-disulfate (500 microM) gives a 12.5-fold decrease in the observed rate constant of inactivation by 4 mM mBBr. When incubated for 60 min with 4 mM mBBr, the 1-1 isozyme loses 60% of its activity and incorporates 1.7 mol reagent/mol subunit. Peptide analysis after thermolysin digestion indicates that mBBr modification is equally distributed between two cysteine residues at positions 17 and 111. Modification at these two sites is reduced equally in the presence of the added protectant, 17 beta-estradiol-3,17-disulfate, suggesting that Cys 17 and Cys 111 reside within or near the enzyme''s steroid binding sites. In contrast to the 1-1 isozyme, the other alpha-class isozyme (2-2) is not inactivated by mBBr at concentrations as high as 15 mM. The different reaction kinetics and modification sites by mBBr suggest that distinct binding site structures are responsible for the characteristic substrate specificities of glutathione S-transferase isozymes.  相似文献   

7.
The inactivation of the bovine heart mitochondrial F1-ATPase with 1-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) in the presence of [3H]aniline at pH 7.0 led to the covalent incorporation of 3H into the enzyme. When the ATPase was inactivated by 94% with 0.9 mM EEDQ in the presence of 3.6 mM [3H]aniline in a large-scale experiment in which the protein concentration was 21 mg/ml, 4.2 mol [3H]anilide were formed per mol enzyme, of which 0.35 mol was incorporated per mol of the alpha subunit and 1.0 mol was incorporated per mol of the beta subunit. Examination of a tryptic digest of the isolated alpha subunit revealed that the majority of the 3H was contained in a single tryptic peptide, which, when purified, was shown to contain the [3H]anilide of a glutamic acid residue which corresponds to alpha-Glu-402 of the Escherichia coli F1-ATPase. This residue was labeled to the extent of about 1.0 mol/mol enzyme. Analysis of tryptic peptides purified from the isolated beta subunit showed that 0.8 and 1.5 mol, respectively, of the [3H]anilides of beta-Glu-341 and beta-Glu-199 were formed per mol MF1 during the inactivation of the enzyme at 21 mg/ml. When the ATPase was inactivated by 90% at a protein concentration of 1.7 mg/ml by 0.9 mM EEDQ in the presence of 1.7 mM [3H]aniline, 3.1 mol [3H]anilide were formed per mol enzyme. From the analysis of the radioactive peptides purified from a tryptic digest of the labeled ATPase from this experiment it was estimated that 0.7 mol of the [3H]anilide of alpha-Glu-402, 0.3 mol of the [3H]anilide of beta-Glu-341, and 1.5 mol of the [3H]anilide of beta-Glu-199 were formed per mol F1-ATPase. Since beta-Glu-199 is labeled to the same extent in the two experiments while alpha-Glu-402 and beta-Glu-341 were not, suggests that the modification of beta-Glu-199 is responsible for inactivation of the enzyme by EEDQ.  相似文献   

8.
A cytosolic glutathione S-transferase from pig lung was purified 210-fold to apparent homogeneity. The enzyme was classified as a class pi isoenzyme on the basis of its physical and chemical properties. It is homodimeric with a subunit Mr of 23,500, has a pI of 7.2, and shows a high specific activity towards ethacrynic acid. The glutathione analogues, S-hexylglutathione and glutathione sulfonate, were strong reversible inhibitors. The enzyme's primary structure, established entirely by protein chemical methods, consists of 203 amino acids and is highly similar (82-84% residue identity) to the rat and human class pi isoenzymes. Furthermore, there was no evidence of microheterogeneity or post-translational modifications. Each subunit contains a highly reactive cysteine residue, the modification of which leads to enzyme inactivation. None of the cysteine residues in the pig enzyme appear to form intramolecular disulfide bonds. Singel crystals of the glutathione-S-transferase-glutathione-sulfonate complex were obtained by the hanging-drop method of vapour diffusion from poly(ethylene glycol) 4000 solutions. The crystals belong to the orthorhombic space group P212121 with unit cell dimensions of a = 10.125 nm, b = 8.253 nm and c = 5.428 nm and diffract to better than 0.22 nm.  相似文献   

9.
The compound 3-methyleneoxindole (MOI), a photooxidation product of the plant auxin indole-3-acetic acid, functions as an affinity label of the dimeric pi class glutathione S-transferase (GST) isolated from pig lung. MOI inactivates the enzyme to a limit of 14% activity. The k for inactivation by MOI is decreased 20-fold by S-hexylglutathione but only 2-fold by S-methylglutathione, suggesting that MOI does not react entirely within the glutathione site. The striking protection against inactivation provided by S-(hydroxyethyl)ethacrynic acid indicates that MOI reacts in the active site region involving both the glutathione and the xenobiotic substrate sites. Incorporation of [(3)H]MOI up to approximately 1 mol/mol of enzyme dimer concomitant with maximum inactivation suggests that there are interactions between subunits. Fractionation of the proteolytic digest of [(3)H]MOI-modified GST pi yielded Trp38 as the only labeled amino acid. The crystal structure of the human GST pi-ethacrynic acid complex (2GSS) shows that the indole of Trp38 is less than 4 A from ethacrynic acid. Similarly, MOI may bind in this substrate site. In contrast to its effect on the pi class GST, MOI inactivates much less rapidly and extensively alpha and mu class GSTs isolated from the rat. These results show that MOI reacts preferentially with GST pi. Such a compound may be useful in novel combination chemotherapy to enhance the efficacy of alkylating cancer drugs while minimizing toxic side effects.  相似文献   

10.
The aziridinium of purified quinacrine mustard at 50 microM inactivates the bovine heart mitochondrial F1-ATPase with a pseudo-first order rate constant of 0.07 min-1 at pH 7.0 and 23 degrees C. An apparent Kd of 27 microM for the enzyme-reagent complex was estimated from the dependence of the rate of inactivation on the concentration of quinacrine mustard. The pH inactivation profile revealed that deprotonation of a group with a pKa of about 6.7 is necessary for inactivation. The amount of reagent incorporated into the protein increased linearly with the extent of inactivation. Complete inactivation was estimated to occur when 3 mol of reagent were incorporated/mol of F1. Enzyme, in which steady state ATPase was inactivated by 98% by quinacrine mustard, hydrolyzed substoichiometric ATP with zero order kinetics suggesting that residual activity is catalyzed by F1 in which at least one beta subunit is modified. By exploiting the reactivity of the aziridinium of covalently attached reagent with [3H] aniline, sites modified by quinacrine mustard were labeled with 3H. Isolation of radioactive cyanogen bromide peptides derived from F1 inactivated with the reagent in the presence of [3H]aniline which were identified by sequence analysis and sequence analyses of radioactive tryptic fragments arising from them have revealed the following. About two thirds of the radioactivity incorporated into the enzyme during inactivation is apparently esterified to one or more of the carboxylic acid side chains in a CNBr-tryptic fragment of the beta subunit with the sequence: 394DELSEEDK401. The remainder of the radioactivity is associated with at least two sites within the cyanogen bromide peptide containing residues 293-358 of the beta subunit. From these results it is concluded that inactivation of F1 by the aziridinium of quinacrine mustard is due, at least in part, to modification of one or more of the carboxylic acid side chains in the DELSEED segment of the beta subunit and possibly also to modification of unspecified amino acid side chains between residues 302-356 of the beta subunit.  相似文献   

11.
S H Vollmer  R F Colman 《Biochemistry》1990,29(10):2495-2501
The affinity label 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-triphosphate (8-BDB-TA-5'-TP) reacts covalently with rabbit muscle pyruvate kinase, incorporating 2 mol of reagent/mol of enzyme subunit upon complete inactivation. Protection against inactivation is provided by phosphoenolpyruvate, K+, and Mn2+ and only 1 mol of reagent/mol of subunit is incorporated [DeCamp, D.L., Lim, S., & Colman, R.F. (1988) Biochemistry 27, 7651-7658]. We have now identified the resultant modified residues. After reaction with 8-BDB-TA-5'-TP at pH 7.0, modified enzyme was incubated with [3H]NaBH4 to reduce the carbonyl groups of enzyme-bound 8-BDB-TA-5'-TP and to introduce a radioactive tracer into the modified residues. Following carboxymethylation and digestion with trypsin, the radioactive peptides were separated on a phenylboronate agarose column followed by reverse-phase high-performance liquid chromatography in 0.1% trifluoroacetic acid with an acetonitrile gradient. Gas-phase sequencing gave the cysteine-modified peptides Asn162-Ile-Cys-Lys165 and Cys151-Asp-Glu-Asn-Ile-Leu-Trp-Leu-Asp-Tyr-Lys161, with a smaller amount of Asn43-Thr-Gly-Ile-Ile-Cys-Thr-Ile-Gly-Pro-Ala-Ser-Arg55. Reaction in the presence of the protectants phosphoenolpyruvate, K+, and Mn2+ yielded Asn-Ile-Cys-Lys as the only labeled peptide, indicating that inactivation is caused by modification of Cys151 and Cys48.  相似文献   

12.
Purified glutathione S-transferase from rat liver cytosol are irreversibly inhibited by the glutathione conjugate of tetrachloro-1,4-benzoquinone, 2-S-glutathionyl-3,5,6-trichloro-1,4-benzoquinone. The inhibition is due to covalent binding in or near the active site, resulting in modification of a single amino acid residue/subunit, presumably a cysteine residue. The amount of inhibition is related to the molar ratio of the inhibitor and the enzyme and is independent of the enzyme concentration. A 70-80% inhibition is obtained on incubating the enzyme with a 5-fold molar excess of the conjugate. Complete 100% inhibition is never reached. The derivative bound to the enzyme still possesses a quinone structure and is able to react with thiol-containing compounds. Reduction of the enzyme-bound quinone abolishes its reactivity but does not decrease the inhibition. At 0 degrees C, the glutathione conjugate of tetrachloro-1,4-benzoquinone inhibits the glutathione S-transferases at a much higher rate than the corresponding beta-mercaptoethanol conjugate, indicating a distinct targetting effect of the glutathione moiety. However, the parent compound, tetrachloro-1,4-benzoquinone, also has a considerable affinity for the enzymes. Although it does not react as fast as the glutathione conjugate, it reacts with the same amino acid residue. Protection from inhibition by the substrate analog S-hexylglutathione also indicates an active site-directed modification. Small but significant differences exist between the different rat liver transferase isoenzymes; using a 20-fold molar excess the inhibition ranges from 78 to 98% for the conjugate, and from 72 to 93% for the quinone, with isoenzyme 1-1 being the most and isoenzyme 2-2 the least inhibited forms.  相似文献   

13.
The bifunctional reagent 1,4-dibromobutanedione (DBBD) reacts covalently with pyruvate kinase from rabbit muscle to cause inactivation of the enzyme at a rate that is linearly dependent on the reagent concentration, giving a second order rate constant of 444 min-1 M-1. The individual substrates phosphoenolpyruvate (with KCl), ADP, or ATP in the presence of divalent metal cation provide marked protection against inactivation suggesting that reaction occurs in the region of the active site. The limited incorporation of DBBD into pyruvate kinase was measured by reduction of the carbonyl groups of the enzyme-bound reagent using [3H]NaBH4. When pyruvate kinase was reacted with 120 microM DBBD at pH 7.0 for 50 min in the absence of protectants, 1.8 mol of tritium/mol of subunit was incorporated, whereas in the presence of phosphoenolpyruvate with KCl, only 1.0 mol of tritium was incorporated per mole of subunit. Modified peptides were isolated from tryptic digests of pyruvate kinase. Reaction of enzyme in the presence of substrate (showing no activity loss) yielded a single peptide, Asn-Ile-X1-Lys, where X1 corresponds to Cys164 of the known amino acid sequence of muscle pyruvate kinase. In the absence of protectants, reaction for 10 min (when the enzyme retained substantial activity) yielded Asn-Ile-X1-Lys as the major labeled peptide, whereas reaction for 50 min (when the enzyme was 88% inactivated) yielded predominantly Asn-Ile-X1-Lys cross-linked to X2-Asp-Glu-Asn-Ile-Leu-Trp-Leu-Asp-Tyr-Lys, where X2 corresponds to Cys151. Because activity loss correlates with the appearance of the cross-linked peptides but not with formation of Asn-Ile-X1-Lys, inactivation is likely caused by the reaction leading to the cross-link between Cys151 and Cys164. The distance between the alpha-carbons of these residues in the crystal structure is 15.5 A, whereas only 12.0 A can be spanned by the two side chains linked by a dioxobutyl group, suggesting either that pyruvate kinase undergoes a conformational change in forming the cross-link or that local rapid fluctuations in structure occur in solution to the extent of 3.5 A in this region of pyruvate kinase.  相似文献   

14.
During the inactivation of the nucleotide-free F1-ATPase at pH 7.0, by p-fluorosulfonyl[14C]benzoyl-5'-adenosine ([14C]FSBA) in the presence of 20% glycerol, about 4.5 g atoms of 14C are incorporated/350,000 g of enzyme. Isolation of the subunits has shown: (a) over 90% of the incorporated label is associated with the alpha and beta subunits; (b) the amount of label incorporated into the alpha subunit is about 0.5 g atoms/mol which is nonspecifically associated with a number of tyrosine and lysine residues; (c) the amount of radioactivity incorporated into the beta subunit is about 0.9 g atoms/mol which correlates with the degree of inactivation of the enzyme and resides on a single tyrosine residue; (d) up to 2.2 mol of alpha subunit have been isolated from each mole of inactivated enzyme; and (e) about 2 mol of beta subunit have been isolated from each mole of inactivated enzyme. These results account for the incorporation of 4.5 g atoms of 14C which are incorporated/mol of ATPase during inactivation if there are three copies each of the alpha and beta subunit present in the enzyme. It has also been shown that 4-chloro-7-nitrobenzofurazan (NBD-Cl) and FSBA react with different tyrosine residues when they inactivate the ATPase. In addition, it has been shown that the ATPase inactivated with FSBA retains the capacity to bind up to 2.2 mol of [14C]ADP/350,000 g of enzyme.  相似文献   

15.
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.  相似文献   

16.
The compound 4-(fluorosulfonyl)benzoic acid (4-FSB) functions as an affinity label of the dimeric pig lung pi class glutathione S-transferase yielding a completely inactive enzyme. Protection against inactivation is provided by glutathione-based ligands, suggesting that the reaction target is near or part of the glutathione binding site. Radioactive 4-FSB is incorporated to the extent of 1 mol per mole of enzyme subunit. Peptide mapping revealed that 4-FSB reacts with two tyrosine residues in the ratio 69% Tyr7 and 31% Tyr106. The ratio is not changed by the addition of ligands. The results suggest that only one of the tyrosine residues can be labeled in the active site of a given subunit; i.e., reactions with Tyr7 and Tyr106 are mutually exclusive. We propose that the difference in labeling of these tyrosine residues is related to their pKa values, with Tyr7 exhibiting the lower pKa. The modified enzyme no longer binds to a S-hexylglutathione-agarose affinity column, even when only one of the active sites contains 4-FSB; these results may reflect interaction between the subunits. We conclude that Tyr7 and Tyr106 of the pig lung class pi glutathione S-transferase are important for function and are located at or close to the substrate binding site of the enzyme.  相似文献   

17.
Glutathione peroxidase (glutathione--H2O2 oxidoreductase; EC 1.11.1.9) was purified to homogeneity from human placenta by using (NH4)2SO4 precipitation, ion-exchange chromatography, Sephadex gel filtration and preparative polyacrylamide-disc-gel electrophoresis. Glutathione peroxidase from human placenta is a tetramer, having 4g-atoms of selenium/mol of protein. The molecular weight of the enzyme is about 85000 with a subunit size of about 22,000. Kinetic properties of the enzyme are described. On incubation with cyanide, glutathione peroxidase is completely and irreversibly inactivated and selenium is released as a low-molecular-weight fragment. Reduced glutathione, beta-mercaptoethanol and dithiothreitol protect the enzyme from inactivation by cyanide and the release of selenium. Properties of human placental glutathione peroxidase are similar to those of isoenzyme A reported earlier by us from human erythrocytes. The presence of isoenzyme, B, reported earlier by us in human erythrocytes, was not detected in placenta. Also selenium-independent glutathione peroxidase (isoenzyme II), which is specific for cumene hydroperoxide, was not present in human placenta.  相似文献   

18.
Benzyl isothiocyanate (BITC), present in cruciferous vegetables, is an efficient substrate of human glutathione S-transferase P1-1 (hGST P1-1). BITC also acts as an affinity label of hGST P1-1 in the absence of glutathione, yielding an enzyme inactive toward BITC as substrate. As monitored by using BITC as substrate, the dependence of k of inactivation (K(I)) of hGST P1-1 on [BITC] is hyperbolic, with K(I) = 66 +/- 7 microM. The enzyme incorporates 2 mol of BITC/mol of enzyme subunit upon complete inactivation. S-Methylglutathione and 8-anilino-1-naphthalene sulfonate (ANS) each yield partial protection against inactivation and decrease reagent incorporation, whereas S-(N-benzylthiocarbamoyl)glutathione or S-methylglutathione + ANS protects completely. Mapping of proteolytic digests of modified enzyme by using mass spectrometry reveals that Tyr(103) and Cys(47) are modified equally. S-Methylglutathione reduces modification of Cys(47), indicating this residue is at/near the glutathione binding region, whereas ANS decreases modification of Tyr(103), suggesting this residue is at/near the BITC substrate site, which is also near the binding site of ANS. The Y103F and Y103S mutant enzymes were generated, expressed, and purified. Both mutants handle substrate 1-chloro-2,4-dinitrobenzene normally; however, Y103S exhibits a 30-fold increase in K(m) for BITC and binds ANS poorly, whereas Y103F has a normal K(m) for BITC and K(d) for ANS. These results indicate that an aromatic residue at position 103 is essential for the binding of BITC and ANS. This study provides evidence for the existence of a novel xenobiotic substrate site in hGST P1-1, which can be occupied by benzyl isothiocyanate and is distinct from that of monobromobimane and 1-chloro-2,4 dinitrobenzene.  相似文献   

19.
Lee P  Gorrell A  Fromm HJ  Colman RF 《Biochemistry》1999,38(18):5754-5763
Adenylosuccinate synthetase from Escherichia coli is inactivated in a biphasic reaction by 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-monophosphate (6-BDB-TAMP) at pH 7.0 and 25 degrees C. The initial fast-phase inactivation is not affected by the presence of active-site ligands and can be completely eliminated by blocking Cys291 of the enzyme with N-ethylmaleimide (NEM). Reaction of the NEM-treated enzyme with 6-BDB-[32P]TAMP results in 2 mol of reagent incorporated/mol of enzyme subunit. The inactivation kinetics of the slow-phase exhibit an apparent KI of 40.6 microM and kmax of 0.0228 min-1. Active-site ligands, either adenylosuccinate or IMP and GTP, completely prevent inactivation of the enzyme by 6-BDB-TAMP, whereas IMP or IMP and aspartate is much less effective in protection. 6-BDB-TAMP-inactivated enzyme has a 3-fold increase in Km for aspartate with no change in Km for IMP or GTP. Protease digestion of 6-BDB-[32P]TAMP inactivated enzyme reveals that both Arg131 and Arg303 are modified by the affinity-labeling reagent. The crystal structure [Poland, B. W., Fromm, H. J., and Honzatko, R. B. (1996) J. Mol. Biol. 264, 1013-1027] and site-directed mutagenesis [Kang, C., Sun, N., Poland, B. W., Gorrell, A., and Fromm, H. J. (1997) J. Biol. Chem. 272, 11881-11885] of E. coli adenylosuccinate synthetase show that Arg303 interacts with the carboxyl group of aspartate and the 2'-OH of the ribose of IMP and Arg131 is involved in stabilizing aspartate in the active site of the enzyme. We conclude that 6-BDB-TAMP functions as a reactive adenylosuccinate analogue in modifying both Arg131 and Arg303 in the active site of adenylosuccinate synthetase.  相似文献   

20.
A previously uncharacterized glutathione S-transferase isoenzyme which is absent from normal adult rat livers has been isolated from fetal rat livers. The enzyme was purified using a combination of affinity chromatography, CM-cellulose column chromatography and chromatofocusing. It is composed of two non-identical subunits, namely, subunit Yc (Mr 28,000) and a subunit (Mr 25,500) recently reported by us to be uniquely present in fetal rat livers and which we now refer to as subunit 'Yfetus'. The enzyme which we term glutathione S-transferase YcYfetus has an isoelectric point of approx. 8.65 and has glutathione S-transferase activity towards a number of substrates. The most significant property of the fetal isozyme is its high glutathione peroxidase activity towards the model substrate cumene hydroperoxide. We suggest that this isozyme serves a specific function in protecting fetuses against the possible teratogenic effects of organic peroxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号