首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycoproteins homologous to glycoprotein B (gB) of herpes simplex virus constitute the most highly conserved group of herpesvirus glycoproteins. This strong conservation of amino acid sequences might be indicative of a common functional role. Indeed, gB homologs have been implicated in the processes of viral entry and virus-mediated cell-cell fusion. Recently, we showed that pseudorabies virus (PrV) lacking the essential gB-homologous glycoprotein gII could be propagated on a cell line expressing the gB homolog of bovine herpesvirus 1, gI(BHV-1), leading to a phenotypic complementation of the gII defect (I. Rauh, F. Weiland, F. Fehler, G. Keil, and T.C. Mettenleiter, J. Virol. 65:621-631, 1991). However, this pseudotypic virus could still replicate only on complementing cell lines, thereby limiting experimental approaches to analyze the effects of the gB exchange in detail. We describe here the construction and isolation of a PrV recombinant, 9112C2, that lacks gII(PrV) but instead stably carries and expresses the gene encoding gI(BHV-1). The recombinant is able to replicate on noncomplementing cells with growth kinetics and final titers similar to those of its gII-positive wild-type PrV parent. Neutralization tests and immunoprecipitation analyses demonstrated incorporation of gI(BHV-1) into 9112C2 virions with concomitant absence of gII(PrV). Analysis of in vitro host ranges of wild-type PrV, BHV-1, and recombinant 9112C2 showed that in cells of pig, rabbit, canine, monkey, or human origin, the plating efficiency of 9112C2 was similar to that of its PrV parent. Exchange of gII(PrV) for gI(BHV-1) in recombinant 9112C2 or by phenotypic complementation of gII- PrV propagated on gI(BHV-1)-expressing cell lines resulted in penetration kinetics intermediate between those of wild-type PrV and BHV-1. In conclusion, we report the first isolation of a viral recombinant in which a lethal glycoprotein mutation has been rescued by a homologous glycoprotein of a different herpesvirus. Our data show that in gII- PrV, gI(BHV-1) in vitro fully complements the lethal defect associated with lack of gII(PrV). These results conclusively demonstrate that gI(BHV-1) in a PrV background can execute all essential functions normally provided by gII(PrV). They also indicate that the origin of gB-homologous glycoproteins influences the penetration kinetics of herpesviruses.  相似文献   

2.
Glycoproteins homologous to gB of herpes simplex virus (HSV) constitute the most highly conserved family of herpesvirus glycoproteins. All gB homologs analyzed so far have been shown to play essential roles in penetration and direct viral cell-to-cell spread. In studies aimed at assessing whether the high sequence homology is also indicative of functional homology, we analyzed the ability of the gB-homologous glycoprotein (former designation gII) of pseudorabies virus (PrV) to complement a gB- HSV type 1 (HSV-1) mutant and vice versa. The results show that a PrV gB-expressing cell line phenotypically complemented the lethal defect in gB- HSV-1 whereas reciprocal complementation of a gB- PrV mutant by HSV-1 gB was not observed.  相似文献   

3.
The genome of pseudorabies virus (PrV) encodes at least seven glycoproteins. The glycoprotein complex gII consists of three related polypeptides, two of them derived by proteolytic cleavage from a common precursor and linked via disulfide bonds. It is homologous to herpes simplex virus (HSV) gB and is therefore thought to be essential for PrV replication, as is gB for HSV replication. To isolate PrV mutants deficient in gII expression, we established cell lines that stably carry the PrV gII gene. Line N7, of Vero cell origin, contains the gII gene under its own promoter and expresses gII after transactivation by herpesviral functions after infection. MDBK-derived line MT3 contains the gII gene under control of the mouse metallothionein promoter. However, it has essentially lost inducibility and constitutively produces high amounts of correctly processed glycoprotein gII. We used a beta-galactosidase expression cassette inserted into a partially deleted cloned copy of the gII gene for cotransfection with PrV DNA. gII- PrV mutants were isolated from viral progeny by taking advantage of their blue-plaque phenotype when incubated under an agarose overlay containing a chromogenic substrate. Analysis of these mutants proved that gII is indeed essential for PrV replication, since the gII- mutants grew normally on gII-complementing cells but were unable to produce plaques on noncomplementing cells. Surprisingly the PrV gII- mutants were also able to grow on a cell line constitutively expressing the gB-homologous glycoprotein gI from bovine herpesvirus 1 (BHV-1) to the same extent as on cells expressing PrV gII. gII- PrV propagated on cells expressing BHV-1 gI became susceptible to neutralization by anti-BHV-1 gI monoclonal antibodies. We also found that BHV-1 gI is present in the envelope of purified gII- pseudorabies virions grown on cells expressing BHV-1 gI, as judged by radioimmunoprecipitation and immunoelectron microscopy. These results prove that BHV-1 gI is integrated into the PrV envelope and can functionally replace glycoprotein gII of PrV.  相似文献   

4.
Glycoprotein D (gD) of bovine herpesvirus 1 (BHV-1) has been shown to be an essential component of virions involved in virus entry. gD expression in infected cells is also required for direct cell-to-cell spread. Therefore, BHV-1 gD functions are identical in these aspects to those of herpes simplex virus 1 (HSV-1) gD. In contrast, the gD homolog of pseudorabies virus (PrV), although essential for penetration, is not necessary for direct cell-to-cell spread. Cocultivation of cells infected with phenotypically gD-complemented gD- mutant BHV-1/80-221 with noncomplementing cells resulted in the isolation of the cell-to-cell-spreading gD-negative mutant ctcs+BHV-1/80-221, which was present in the gD-null BIV-1 stocks. ctcs+BHV-1/80-221 could be propagated only by mixing infected with uninfected cells, and virions released into the culture medium were noninfectious. Marker rescue experiments revealed that a single point mutation in the first position of codon 450 of the glycoprotein H open reading frame, resulting in a glycine-to-tryptophan exchange, enabled complementation of the gD function for cell-to-cell spread. After about 40 continuous passages of ctcs+BHV-1/80-221-infected cells with noninfected cells, the plaque morphology in the cultures started to change from roundish to comet shaped. Cells from such plaques produced infectious gD- virus, named gD-infBHV-1, which entered cells much more slowly than wild-type BHV-1. In contrast, integration of the gD gene into the genomes of gD-infBHV-1 and ctcs+BHV-1/80-221 resulted in recombinants with accelerated penetration in comparison to wild-type virions. In summary, our results demonstrate that under selective conditions, the function of BHV-1 gD for direct cell-to-cell spread and entry into cells can be compensated for by mutations in other viral (glyco)proteins, leading to the hypothesis that gD is involved in formation of penetration-mediating complexes in the viral envelope of which gH is a component. Together with results for PrV, varicella-zoster virus, which lacks a gD homolog, and Marek's disease virus, whose gD homolog is not essential for infectivity, our data may open new insights into the evolution of alphaherpesviruses.  相似文献   

5.
Glycoprotein B (gB) of bovine herpesvirus 1 (BHV-1) is essential for BHV-1 replication and is required for membrane fusion processes leading to virus penetration into the target cell and direct spreading of BHV-1 from infected to adjacent noninfected cells. Like many of the herpesvirus gB homologs, BHV-1 gB is proteolytically processed by furin, an endoproteinase localized in the trans-Golgi network. Cleavage by furin is a common mechanism for the activation of a number of viral fusion (F) proteins. Among these, the F proteins of both human and bovine respiratory syncytial virus (RSV) have the so-far unique feature that cleavage of the respective F protein precursors occurs at two furin recognition sites, resulting in the release of a 27-amino-acid intervening peptide which is secreted into the extracellular space. We showed recently that the intervening peptide of bovine RSV can be replaced by bovine interleukins which are secreted into the medium of cells infected with the respective bovine RSV recombinants (P. Konig, K. Giesow, K. Schuldt, U. J. Buchholz, and G. M. Keil, J. Gen. Virol. 85:1815-1824, 2004). To elucidate whether the approach to transport heterologous proteins as furin-excisable polypeptides functions in principle also in glycoproteins which are cleaved by furin only once, we inserted a second furin cleavage site into BHV-1 gB and integrated a 16-amino-acid peptide sequence, the 246-amino-acid green fluorescent protein (GFP), or the 167 amino acids for mature bovine alpha interferon (boIFN-alpha) as an intervening polypeptide. The resulting gB variants rescued gB-negative BHV-1 mutants, the resulting BHV-1 recombinants were fully infectious, and infected cells secreted biologically active GFP and boIFN-alpha, respectively. In contrast to the gB2Fu and gB2FuGFP precursor molecules, which were efficiently cleaved at both furin sites, the majority of pgB2FuIFN-alpha was not cleaved at the site between the amino-terminal (NH2) subunit and boIFN-alpha, whereas cleavage at the newly introduced site was normal. This resulted in virus particles that also contain the NH2-subunit/boIFN-alpha fusion protein within their envelopes. Our results demonstrate that BHV-1 gB can be used as a transporter for peptides and proteins which could be important for development of novel vaccines. In addition, the general principle might be useful for other applications, e.g., in gene therapy and also in nonviral systems.  相似文献   

6.
Herpesvirus glycoproteins play dominant roles in the initiation of infection of target cells in culture and thus may also influence viral tropism in vivo. Whereas the relative contribution of several nonessential glycoproteins to neurovirulence and neurotropism of Pseudorabies virus (PrV), an alphaherpesvirus which causes Aujeszky's disease in pigs, has recently been uncovered in studies using viral deletion mutants, the importance of essential glycoproteins is more difficult to assess. We isolated an infectious PrV mutant, PrV-9112C2, which lacks the gene encoding the essential PrV glycoprotein B (gB) but stably carries in its genome and expresses the homologous gene of bovine herpesvirus 1 (BHV-1) (A. Kopp and T. C. Mettenleiter, J. Virol. 66:2754-2762, 1992). Apart from exhibiting a slight delay in penetration kinetics, PrV-9112C2 was similar in its growth characteristics in cell culture to wild-type PrV. To analyze the effect of the exchange of these homologous glycoproteins in PrV's natural host, swine, 4-week-old piglets were intranasally infected with 10(6) PFU of either wild-type PrV strain Kaplan (PrV-Ka), PrV-9112C2, or PrV-9112C2R, in which the PrV gB gene was reinserted instead of the BHV-1 gB gene. Animals infected with PrV-Ka and PrV-9112C2R showed a similar course of disease, i.e., high fever, marked respiratory symptoms but minimal neurological disorders, and excretion of high amounts of virus. All animals survived the infection. In contrast, animals infected with PrV-9112C2 showed no respiratory symptoms and developed only mild fever. However, on day 5 after infection, all piglets developed severe central nervous system (CNS) symptoms leading to death within 48 to 72 h. Detailed histological analyses showed that PrV-9112C2R infected all regions of the nasal mucosa and subsequently spread to the CNS preferentially by the trigeminal route. In contrast, PrV-9112C2 primarily infected the olfactory epithelium and spread via the olfactory route. In the CNS, more viral antigen and significantly more pronounced histological changes resulting in more severe encephalitis were found after PrV-9112C2 infection. Thus, our results demonstrate that replacement of PrV gB by the homologous BHV-1 glycoprotein resulted in a dramatic increase in neurovirulence combined with an alteration in the route of neuroinvasion, indicating that the essential gB is involved in determining neurotropism and neurovirulence of PrV.  相似文献   

7.
Attachment to cell surface heparan sulfate proteoglycans is the first step in infection by several alphaherpesviruses. This interaction is primarily mediated by virion glycoprotein C (gC). In herpes simplex virus, in the absence of the nonessential gC, heparan sulfate binding is effected by glycoprotein B. In contrast, gC-negative pseudorabies virus (PrV) infects target cells via a heparan sulfate-independent mechanism, indicating that PrV virion gB does not productively interact with heparan sulfate. To assay whether a heterologous alphaherpesvirus gB protein will confer productive heparan sulfate binding on gC-negative PrV, gC was deleted from an infectious PrV recombinant, PrV-9112C2, which expresses bovine herpesvirus 1 (BHV-1) gB instead of PrV gB. Our data show that gC-negative PrV-BHV-1 gB recombinant 9112C2-delta gCbeta was not inhibited in infection by soluble heparin, in contrast to the gC-positive parental strain. Similar results were obtained when wild-type BHV-1 was compared with a gC-negative BHV-1 mutant. Moreover, infection of cells proficient or deficient in heparan sulfate biosynthesis occurred with equal efficiency by PrV-9112C2-delta gCbeta, whereas heparan sulfate-positive cells showed an approximately fivefold higher plating efficiency than heparan sulfate-negative cells with the parental gC-positive virus. In summary, our data show that in a PrV gC-negative virion background, BHV-1 gB is not able to mediate infection by productive interaction with heparan sulfate, and they indicate the same lack of heparin interaction for BHV-1 gB in gC-negative BHV-1.  相似文献   

8.
We expressed the bovine herpesvirus 1 (BHV-1) glycoprotein IV (gIV) in bovine cells. The protein expressed was identical in molecular mass and antigenic reactivity to the native gIV protein but was localized in the cytoplasm. Expressing cells were partially resistant to BHV-1, herpes simplex virus, and pseudorabies virus, as shown by a 10- to 1,000-fold-lower number of plaques forming on these cells than on control cells. The level of resistance depended on the level of gIV expression and the type and amount of challenge virus. These data are consistent with previous reports by others that cellular expression of the BHV-1 gIV homologs, herpes simplex virus glycoprotein D, and pseudorabies virus glycoprotein gp50 provide partial resistance against infection with these viruses. We have extended these findings by showing that once BHV-1 enters gIV-expressing cells, it replicates and spreads normally, as shown by the normal size of BHV-1 plaques and the delayed but vigorous synthesis of viral proteins. Our data are consistent with the binding of BHV-1 gIV to a cellular receptor required for initial penetration by all three herpesviruses and interference with the function of that receptor molecule.  相似文献   

9.
Glycoprotein B (gB) of human cytomegalovirus (HCMV), which is considered essential for the viral life cycle, is proteolytically processed during maturation. Since gB homologues of several other herpesviruses remain uncleaved, the relevance of this property of HCMV gB for viral infectivity is unclear. Here we report on the construction of a viral mutant in which the recognition site of gB for the cellular endoprotease furin was destroyed. Because mutagenesis of essential proteins may result in a lethal phenotype, a replication-deficient HCMV gB-null genome encoding enhanced green fluorescent protein was constructed, and complementation by mutant gBs was initially evaluated in transient-cotransfection assays. Cotransfection of plasmids expressing authentic gB or gB with a mutated cleavage site (gB-DeltaFur) led to the formation of green fluorescent miniplaques which were considered to result from one cycle of phenotypic complementation of the gB-null genome. To verify these results, two recombinant HCMV genomes were constructed: HCMV-BAC-DeltaMhdI, with a deletion of hydrophobic domain 1 of gB that appeared to be essential for viral growth in the cotransfection experiments, and HCMV-BACDeltaFur, in which the gB cleavage site was mutated by amino acid substitution. Consistent with the results of the cotransfection assays, only the DeltaFur mutant replicated in human fibroblasts, showing growth kinetics comparable to that of wild-type virus. gB in mutant-infected cells was uncleaved, whereas glycosylation and transport to the cell surface were not impaired. Extracellular mutant virus contained exclusively uncleaved gB, indicating that proteolytic processing of gB is dispensable for viral replication in cell culture.  相似文献   

10.
Chinese hamster ovary (CHO) cells have recently been used for identification of receptors for several alphaherpesviruses, including pseudorabies virus (PrV) (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618-1620, 1998). The experiments were based on the fact that CHO cells are inefficient target cells for PrV. However, a detailed analysis of the interaction between PrV and CHO wild-type and recombinant PrV-receptor bearing cells has not been performed. We show here that PrV has a growth defect on CHO cells which leads to a ca. 100-fold reduction in plating efficiency, strongly delayed penetration kinetics, and a 10(4)-fold reduction in one-step growth. Entry of PrV into CHO cells is significantly delayed but is not affected by inhibitors of endocytosis, suggesting that the mechanism of penetration resembles that on permissive cells. The defects in plating efficiency and penetration could be corrected by expression of herpesvirus entry mediators B (HveB), HveC, or HveD, with HveC being the most effective. However, the defects in one-step growth and plaque formation were not corrected by expression of PrV receptors, indicating an additional restriction in viral replication after entry. Surprisingly, PrV infection of CHO cells was sensitive to neutralization by a gB-specific monoclonal antibody, which does not inhibit PrV infection of other host cells. Moreover, the same monoclonal antibody neutralized PrV infectivity on cells displaying the interference phenomenon by overexpression of gD and subsequent intracellular sequestration of gD receptors. Thus, absence of gD receptors on two different host cells leads to an increased sensitivity of PrV toward gB neutralization. We hypothesize that this is due to the increased requirement for interaction of gB with a cellular surface protein in the absence of the gD-gD receptor interaction. As expected, CHO cells are as susceptible as other host cells to infection by PrV gD(-) Pass, an infectious gD-negative PrV mutant. However, PrV gD(-) Pass was also not able to form plaques on CHO cells.  相似文献   

11.
Pseudorabies virus (PrV) glycoproteins gII and gp50 are major constituents of the viral envelope and targets of neutralizing monoclonal antibodies. Both are homologs of essential glycoproteins found in herpes simplex virus, gB (gII) and gD (gp50). We recently isolated a gII-negative PrV deletion mutant on complementing cell lines and established the essential character of gII for PrV replication (I. Rauh, F. Weiland, F. Fehler, G. Keil, and T.C. Mettenleiter, J. Virol. 65: 621-631, 1991). In this report, we describe the isolation of a gp50-negative PrV mutant after constructing cell lines that constitutively express gp50 and phenotypically complement the gp50 defect. Analysis of the gp50- mutant proved that gp50 is essential for PrV replication. Further studies showed that both gII and gp50 are required for viral penetration into target cells. The penetration defect in the gII and gp50 deletion mutants could be overcome by experimental polyethylene glycol-induced membrane fusion. Surprisingly, whereas gII proved to be essential for both penetration and cell-cell spread of the virus, gp50 was required only for penetration and appeared dispensable for direct cell-cell spread.  相似文献   

12.
Glycoproteins homologous to the type I membrane glycoprotein B (gB) of herpes simplex virus 1 (HSV-1) are the most highly conserved glycoproteins within the family Herpesviridae and are present in members of each herpesvirus subfamily. In the alphaherpesvirus pseudorabies virus (PrV), gB is required for entry into target cells and for direct viral cell-to-cell spread. These processes, though related, appear to be distinct, and thus it was interesting to analyze whether they require different functions of gB. To this end, we established cell lines stably expressing different carboxy-terminally truncated versions of PrV gB by deleting either (i) one predicted intracytoplasmic alpha-helical domain encompassing putative YQRL and dileucine internalization signals, (ii) two predicted intracytoplasmic alpha-helical domains, (iii) the complete intracytoplasmic domain, or (iv) the intracytoplasmic domain and the transmembrane anchor region. Confocal laser scanning microscopy showed that gB derivatives lacking at least the last 29 amino acids (aa) localize close to the plasma membrane, while the full-length protein accumulates in intracellular aggregations. Trans-complementation studies with a gB-deleted PrV (PrV-gB(-)) demonstrated that the 29-aa truncated form lacking the putative internalization signals and the C-terminal alpha-helical domain (gB-008) was efficiently incorporated into PrV-gB(-) virions and efficiently complemented infectivity and cell-to-cell spread. Moreover, gB-008 exhibited an enhanced fusogenic activity. In contrast, gB proteins lacking both alpha-helical domains (gB-007), the complete intracytoplasmic domain, or the intracytoplasmic domain and transmembrane anchor were only inefficiently or not at all incorporated into PrV-gB(-) virions and did not complement infectivity. However, gB-007 was able to mediate cell-to-cell spread of PrV-gB(-). Similar phenotypes were observed when virus recombinants expressing gB-008 or gB-007, respectively, instead of wild-type gB were isolated and analyzed. Thus, our data show that internalization of gB is not required for gB incorporation into virions nor for its function in either entry or cell-to-cell spread. Moreover, they indicate different requirements for gB in these membrane fusion processes.  相似文献   

13.
Herpesviruses contain a number of envelope glycoproteins which play important roles in the interaction between virions and target cells. Although several glycoproteins are not present in all herpesviruses, others, including glycoproteins H and L (gH and gL), are conserved throughout the Herpesviridae. To elucidate common properties and differences in herpesvirus glycoprotein function, corresponding virus mutants must be constructed and analyzed in different herpesvirus backgrounds. Analysis of gH- mutants of herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) showed that in both viruses gH is essential for penetration and cell-to-cell spread and that its presence is required for virion localization of gL. Since gH homologs are found complexed with gL, it was of interest to assess the phenotype of gL- mutant viruses. By using this approach, HSV-1 gL has been shown to be required for entry and for virion localization of gH (C. Roop, L. Hutchinson, and D. Johnson, J. Virol. 67:2285-2297, 1993). To examine whether a similar phenotype is associated with lack of gL in another alphaherpesvirus, PrV, we constructed two independent gL- PrV mutants by insertion and deletion-insertion mutagenesis. The salient findings are as follows: (i) PrV gL is required for penetration of virions and cell-to-cell spread; (ii) unlike HSV-1, PrV gH is incorporated into the virion in the absence of gL; (iii) virion localization of gH in the absence of gL is not sufficient for infectivity; (iv) in the absence of gL, N-glycans on PrV gH are processed to a greater extent than in the presence of gL, indicating masking of N-glycans by association with gL; and (v) an anti-gL polyclonal antiserum is able to neutralize virion infectivity but did not inhibit cell-to-cell spread. Thus, whereas PrV gL is essential for virus replication, as is HSV-1 gL, gL- PrV mutants exhibit properties strikingly different from those of HSV-1. In conclusion, our data show an important functional role for PrV gL in the viral entry process, which is not explained by a chaperone-type mechanism in gH maturation and processing.  相似文献   

14.
The UL3.5 gene is positionally conserved but highly variable in size and sequence in different members of the Alphaherpesvirinae and is absent from herpes simplex virus genomes. We have shown previously that the pseudorabies virus (PrV) UL3.5 gene encodes a nonstructural protein which is required for secondary envelopment of intracytoplasmic virus particles in the trans-Golgi region. In the absence of UL3.5 protein, naked nucleocapsids accumulate in the cytoplasm, release of infectious virions is drastically reduced, and plaque formation in cell culture is inhibited (W. Fuchs, B. G. Klupp, H. Granzow, H.-J. Rziha, and T. C. Mettenleiter, J. Virol. 70:3517-3527, 1996). To assay functional complementation by a heterologous herpesviral UL3.5 protein, the UL3.5 gene of bovine herpesvirus 1 (BHV-1) was inserted at two different sites within the genome of UL3.5-negative PrV. In cells infected with the PrV recombinants the BHV-1 UL3.5 gene product was identified as a 17-kDa protein which was identical in size to the UL3.5 protein detected in BHV-1-infected cells. Expression of BHV-1 UL3.5 compensated for the lack of PrV UL3.5, resulting in a ca. 1,000-fold increase in virus titer and restoration of plaque formation in cell culture. Also, the intracellular block in viral egress was resolved by the BHV-1 UL3.5 gene. We conclude that the UL3.5 proteins of PrV and BHV-1 are functionally related and are involved in a common step in the egress of alphaherpesviruses.  相似文献   

15.
Alphaherpesvirus genomes exhibit a generally collinear gene arrangement, and most of their genes are conserved among the different members of the subfamily. Among the exceptions is the UL3.5 gene of pseudorabies virus (PrV) for which positional homologs have been detected in the genomes of varicella-zoster virus, equine herpesvirus 1, and bovine herpesvirus 1 but not in the genomes of herpes simplex virus types 1 and 2. To identify and characterize the predicted 224 amino acid UL3.5 protein of PrV, a rabbit antiserum was prepared against a UL3.5 fusion protein expressed in Escherichia coli. In Western blot (immunoblot) analyses the antiserum detected a 30-kDa protein in the cytoplasm of PrV infected cells which was absent from purified virions. For functional analysis, UL3.5-expressing cell lines were established and virus mutants were isolated after the rescue of defective, glycoprotein B-negative PrV by insertion of the complementing glycoprotein B-encoding gene of bovine herpesvirus 1 at two sites within the UL3.5 locus. A PrV mutant carrying the insertion at codon 159 and expressing a truncated UL3.5 protein was still capable of efficient productive replication in noncomplementing cells. In contrast, a PrV mutant carrying the insertion at codon 10 of the UL3.5 gene did not express detectable UL3.5 protein and exhibited a dramatic growth deficiency on non-complementing cells with regard to plaque formation and one-step replication. Electron microscopical studies showed an accumulation of unenveloped capsids in the vicinity of the Golgi apparatus. This defect could be compensated by propagation on complementing UL3.5-expressing cell lines. Our results thus demonstrate that the PrV UL3.5 gene encodes a nonstructural protein which plays an important role in virus replication, presumably during virus egress. The functionally relevant domains appear to be located within the N-terminal part of the UL3.5 protein which also comprises the region exhibiting the highest level of homology between the predicted UL3.5 homologous proteins of other alphaherpesviruses.  相似文献   

16.
Glycoprotein IV (gIV) of bovine herpesvirus 1 (BHV-1), a homolog of herpes simplex virus glycoprotein D, represents a major component of the viral envelope and a dominant immunogen. To analyze the functional role of gIV during BHV-1 replication, cell line BUIV3-7, which constitutively expresses gIV, was constructed and used for the isolation of gIV- BHV-1 mutant 80-221, in which the gIV gene was replaced by a lacZ expression cassette. On complementing gIV-expressing cells, the gIV- BHV-1 replicated normally but was unable to form plaques and infectious progeny on noncomplementing cells. Further analysis showed that gIV is essential for BHV-1 entry into target cells, whereas viral gene expression, DNA replication, and envelopment appear unchanged in both noncomplementing and complementing cells infected with phenotypically complemented gIV- BHV-1. The block in entry could be overcome by polyethylene glycol-induced membrane fusion. After passaging of gIV- BHV-1 on complementing cells, a rescued variant, BHV-1res, was isolated and shown to underexpress gIV in comparison with its wild-type parent. Comparison of the penetration kinetics of BHV-1 wild type, phenotypically complemented gIV- BHV-1, and BHV-1res indicated that penetration efficiency correlated with the amount of gIV present in virus particles. In conclusion, we show that gIV of BHV-1 is an essential component of the virion involved in virus entry and that the amount of gIV in the viral envelope modulates the penetration efficiency of the virus.  相似文献   

17.
The Marek's disease virus (MDV) glycoprotein B (gB) precursor, gp100, is proteolytically cleaved into two disulfide-linked subunits, gp60 and gp49. In the gB homologs of most other herpesviruses, a tetrapeptide, Arg-Xaa-Arg-Arg, is immediately upstream from the predicted cleavage site. We have investigated the specificity of the proteolytic cleavage in gplOO by introducing mutations within its predicted cleavage site (Arg-Leu-Arg-Arg) and expressed these mutants in recombinant fowlpox virus (FPV). The results show that all three Arg residues at the predicted cleavage site play an important role in the specific proteolytic cleavage of gp100. Furthermore, we demonstrated that the cleavage of gplOO is not necessary for transport of gB to the cell surface.  相似文献   

18.
Essential herpesvirus glycoproteins are involved in membrane fusion processes during infection, e.g., viral penetration and direct cell-to-cell transmission. We previously showed that the gD-homologous glycoprotein gp50 of pseudorabies virus (PrV) is essential for virus entry into target cells but proved to be dispensable for direct viral cell-to-cell spread in cell culture (I. Rauh and T. C. Mettenleiter, J. Virol. 65:5348-5456, 1991). For gp50-negative (gp50-) viruses, after phenotypic complementation necessary for primary infection, the only means of viral spread is by way of direct cell-to-cell transmission. In contrast, virus mutants lacking the essential gB-homologous glycoprotein gII after phenotypic complementation are only able to infect primary target cells and are blocked in further viral spread. To analyze how these in vitro phenotypes translate into virus replication in the animal, mice were infected intranasally with gp50- or gII- PrV mutants after prior phenotypic complementation by propagation on cell lines providing the essential glycoprotein in trans. Our results show that whereas the gII- mutants did not cause disease or any symptoms, gp50- mutants derived from two different PrV strains were fully virulent, with animals exhibiting severe symptoms ultimately leading to death. However, free infectious virus could not be recovered from either gp50- or gII- PrV-infected animals. We conclude that direct cell-to-cell transmission as the only means of viral spread of the gp50- mutants is sufficient for a full virulent phenotype in mice. After infection of pigs with phenotypically complemented gp50- PrV, only mild symptoms were observed, whereas the gII- mutant was totally avirulent. In both cases, shedding of infectious virus did not occur, in contrast to results with animals infected by gX- PrV that showed severe signs of disease and extensive virus shedding. After challenge infection with the highly virulent NIA-3 strain, the previously gII- PrV-infected animals exhibited severe symptoms, whereas the gp50- PrV-infected pigs showed a significant level of protection. In conclusion, vaccination with a PrV mutant lacking glycoprotein gp50, which is unable to spread between animals because of a lack of formation of free infectious virions, can confer on pigs protection against challenge infection. These results provide the basis for the development of new, nonspreading live herpesvirus vaccines based on gp50- PrV mutants.  相似文献   

19.
The UL3.5 and UL48 genes, which are conserved in most alphaherpesvirus genomes, are important for maturation of pseudorabies virus (PrV) particles in the cytoplasm of infected cells (W. Fuchs, B. G. Klupp, H. J. Rziha, and T. C. Mettenleiter, J. Virol. 70:3517-3527, 1996; W. Fuchs, H. Granzow, B. G. Klupp, M. Kopp and T. C. Mettenleiter, J. Virol. 76:6729-6742, 2002). In bovine herpesvirus 1 (BoHV-1), the homologous gene products pUL3.5 and pUL48 have been demonstrated to interact physically (N. Lam and G. Letchworth, J. Virol. 74:2876-2884, 2000). Moreover, BoHV-1 pUL3.5 partially complemented a pUL3.5 defect in PrV (W. Fuchs, H. Granzow, and T. C. Mettenleiter, J. Virol. 71:8886-8892, 1997). By using coimmunoprecipitation and yeast two-hybrid studies, we observed a similar interaction between pUL3.5 and pUL48 of PrV, as well as a heterologous interaction between the PrV and BoHV-1 gene products. The relevant domain could be confined to the first 43 amino acids of PrV pUL3.5. Unlike its BoHV-1 homologue, PrV pUL3.5 is processed by proteolytic cleavage, and only an abundant 14-kDa fragment consisting of amino acids 1 to >or=116 could be detected by peptide mass fingerprint analysis of purified wild-type PrV particles, which also contain the pUL48 tegument component. To determine the biological relevance of the protein-protein interaction, pUL3.5-, pUL48-, and double-negative PrV mutants were analyzed in parallel. All deletion mutants were replication competent but exhibited significantly reduced plaque sizes and virus titers in cultured rabbit kidney cells compared to wild-type and rescued viruses, which correlated with a delayed neuroinvasion in intranasally infected mice. Remarkably, the defects of the double-negative mutant were similar to those of pUL48-negative virus. Electron microscopy of cells infected with either deletion mutant revealed the retention of naked nucleocapsids in the cytoplasm and the absence of mature virus particles. In summary, our studies for the first time demonstrate the relevance of the pUL3.5-pUL48 interaction for secondary envelopment of an alphaherpesvirus, give a molecular basis for the observed trans-complementation between the PrV and BHV-1 pUL3.5 homologs, yield conclusive evidence for the incorporation of a proteolytically processed pUL3.5 into PrV virions, and demonstrate the importance of both proteins for neuroinvasion and neurovirulence of PrV.  相似文献   

20.
Glycoprotein B (gB) of pseudorabies virus (PrV) is essential for virus entry into target cells and direct viral cell-to-cell spread. Recently, we described a carboxy-terminally truncated derivative of PrV gB, gB-007, which was inefficiently incorporated into virions, was unable to complement infectivity, but was fully capable of restoring direct viral cell-to-cell spread of gB-negative PrV (R. Nixdorf, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 74:7137-7145, 2000). Since recombinant PrV-007, which expresses gB-007 instead of wild-type gB, was able to spread directly from cell to cell, we attempted to obtain compensatory mutations leading to restoration of the entry defect by performing serial passages in cell culture. This procedure has previously been used to successfully restore entry defects in gD- or gL-deficient PrV mutants. From an initial titer of 100 PFU per ml in the supernatant, titers increased, reaching wild-type levels of up to 10(7) PFU after ca. 20 passages. One single-plaque isolate of the passaged mutant, designated PrV-007Pass, was further characterized. PrV-007Pass gB was efficiently incorporated into the viral envelope and restored infectivity to a gB-negative PrV mutant, PrV-gB(-). Interestingly, localization of PrV-007Pass gB in the plasma membrane was similar to that of PrV-007. In contrast, wild-type gB is mainly found in intracellular vesicles. Marker rescue experiments and trans-complementation assays demonstrated the presence of compensatory mutations within the gB gene of PrV-007Pass. DNA sequencing revealed two point mutations in the gB open reading frame of PrV-007Pass, resulting in amino acid substitutions at positions 305 and 744 of gB, both of which are required for compensation of the defect in PrV-007. Our data again demonstrate the power of reversion analysis of herpesviruses and suggest that cytosolic and ectodomains play a role in incorporation of gB into virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号