共查询到20条相似文献,搜索用时 0 毫秒
1.
BALB/c 3T3 cells infected with a temperature-sensitive mutant (LA90) of RSV have been used to investigate possible heterologous interactions between the pp60v-src tyrosyl kinase and the epidermal growth factor (EGF) and bradykinin receptors. The LA90 pp60v-src exhibits a very rapid activation t1/2 (less than 5 min) of protein kinase activity on decreasing the temperature from 40 degrees C to 35 degrees C. This change in temperature was also found to induce a very rapid decrease in the affinity for 125I-EGF of receptors on the RSV-LA90-infected cells but not of those on control parental cells. However, no significant changes were detected in the binding of 3H-bradykinin to either cell line. Two separable processes control the desensitization of the EGF receptor by pp60v-src, both of which are independent of protein kinase C. The first is rapid and transient, while the second is sensitive to cycloheximide and persists long after inactivation of pp60v-src. 相似文献
2.
Microsomal membranes from human placenta, which bind 5–20 pmol of 125I-epidermal growth factor (EGF) per mg protein, have been affinity-labeled with 125I-EGF either spontaneously or with dimethylsuberimidate. Coomassie blue staining patterns on SDS polyacrylamide gels are minimally altered, and the EGF-receptor complex appears as a specifically labeled band of 180,000 daltons which is not removed by urea, neutral buffers, or chaotropic salts but is partially extracted by mild detergents. Limited proteolysis by alpha chymotrypsin and several other serine proteases yields labeled fragments of 170,000, 130,000, 85,000, and 48,000 daltons. More facile cleavage by papain or bromelain rapidly degrades the hormone-receptor complex to smaller labeled fragments of about 35,000 and 25,000 daltons. These fragments retain the binding site for EGF, are capable of binding EGF, and remain associated with the membrane. Alpha chymotryptic digestion of receptor solubilized by detergents yields the same fragments obtained with intact vesicles, suggesting that the fragments may represent intrinsic proteolytic domains of the receptor. 相似文献
3.
Activation mechanism of solubilized epidermal growth factor receptor tyrosine kinase. 总被引:1,自引:0,他引:1
Gaoxiang Ge Jing Wu Yan Wang Qishui Lin 《Biochemical and biophysical research communications》2002,290(3):914-920
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased. 相似文献
4.
A radioimmunoassay for human epidermal growth factor receptor 总被引:4,自引:0,他引:4
The development of a radioimmunoassay (RIA) for the human epidermal growth factor receptor solubilized with nonionic detergents which employs iodinated epidermal growth factor (125I-EGF) as the specific ligand is described. A monoclonal antibody (R1) that binds specifically to human EGF receptors [Waterfield, M. D., et al. (1982) J. Cell Biochem. 20, 149-161] was used to separate solubilized receptors saturated with 125I-EGF from free ligand by absorption to protein A-Sepharose, and the bound radioactivity was determined. The RIA was linear when increasing amounts of solubilized membrane protein were added and, when compared to the standard polyethylene glycol assay, was more reproducible. In addition, the background nonspecific binding obtained in the presence of a hundred-fold excess of unlabeled EGF was less in the RIA. Substitution of normal mouse serum for the monoclonal antibody gave very low nonspecific background ligand binding and avoided the use of large amounts of unlabeled EGF in the assay. Two major classes of binding sites for EGF were observed in membrane preparations from the cervical carcinoma cell line A431 or from normal human placental tissue. These were present in approximately equal amounts, with apparent dissociation constants of 4 X 10(-10) and 4 X 10(-9) M. Upon solubilization with the nonionic detergent Triton X-100, only one class of EGF binding sites was detected in both cases, with a dissociation constant of 3 X 10(-8) M. The RIA can be used to monitor receptor purification and for quantitation of receptor number and affinity in various cell types. 相似文献
5.
Lee BD Kim S Hur EM Park YS Kim YH Lee TG Kim KT Suh PG Ryu SH 《Journal of neurochemistry》2005,95(1):56-67
Endogenous opioid peptides, found in the central and peripheral nervous systems, perform neuromodulatory roles, and display a wide range of functional and pharmacological properties in vitro and in vivo. In this study, we investigated the effects of prodynorphin gene products on intracellular signaling events and cell survival in rat pheochromocytoma PC12 cells. Leumorphin, but not other prodynorphin gene products including dynorphin A, beta-neoendorphin and rimorphin (dynorphin B), increased cell viability in PC12 cells. The cytoprotective effect of leumorphin was dependent on the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, but was insensitive to both naloxone, a general antagonist of the opioid receptor, and nor-binaltorphimine, a specific antagonist of the kappa opioid receptor. Moreover, a competition-binding assay clearly revealed that leumorphin had another binding site(s) in addition to that for the kappa opioid receptor. Interestingly, leumorphin induced activation of the epidermal growth factor receptor via a Src-dependent mechanism, which was proved to be responsible for the increased survival response. Flow cytometric and microscopic analysis showed that leumorphin rescued cells from serum deprivation-induced apoptosis. Collectively, we suggest that leumorphin prevents apoptosis via epidermal growth factor receptor-mediated activation of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, which occur independent of the kappa opioid receptor. 相似文献
6.
Hepatocyte growth factor induces epithelial cell motility through transactivation of the epidermal growth factor receptor 总被引:3,自引:0,他引:3
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility. 相似文献
7.
Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor 总被引:3,自引:0,他引:3 下载免费PDF全文
Jorissen RN Epa VC Treutlein HR Garrett TP Ward CW Burgess AW 《Protein science : a publication of the Protein Society》2000,9(2):310-324
The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor. 相似文献
8.
表皮生长因子受体与肺脏发育的关系 总被引:1,自引:0,他引:1
表皮生长因子受体(Epidermal growth factor receptor,EGFR)是一种跨膜蛋白受体,是ErbB家族成员之一,具有酪氨酸激酶活性。EGFR与相应的配体结合引起EGFR形成同源或异源二聚体启动胞内信号转导,激活下游多种信号转导途径,产生生物学效应,RAS/RAF/MEK/ERK通路与细胞增殖、分化和凋亡有关;PI3K/PDK1/AKT通路与细胞的迁移和粘附有关。EGFR能促进肺泡II型上皮细胞的成熟和肺表面活性物质的合成、分泌。EGFR对哺乳动物肺脏的作用呈现时空效应及剂量依赖效应,EGFR的下调表达则会引起肺脏发育不成熟;而EGFR过度表达促进肺肿瘤细胞的增殖、侵袭和转移。文章综述了EGFR及其调节信号通路的研究进展,以及EGFR与动物肺脏发育不成熟和肺癌之间的关系。 相似文献
9.
Previously we found that short peptides surrounding major autophosphorylation sites of EGFR (VPEY(1068)INQ, DY(1148)QQD, and ENAEY(1173)LR) suppress phosphorylation of purified EGFR to 30-50% at 4000 microM. In an attempt to improve potencies of the peptides, we modified the sequences by substituting various amino acids for tyrosine or by substituting Gln and Asn for Glu and Asp, respectively. Among the modified peptides, Asp/Asn- and Glu/Gln-substitution in DYQQD (NYQQN) and ENAEYLR (QNAQYLR), respectively, improved inhibitory potencies. The inhibitory potency of NYQQN was not affected by the concentration of ATP, while that of QNAQYLR was affected. Docking simulations showed different mechanisms of inhibition for the peptides: inhibition by binding to the ATP-binding site (QNAQYLR) and inhibition by binding to a region surrounded by alphaC, the activation loop, and the catalytic loop and interfering with the catalytic reaction (NYQQN). The inhibitory potency of NYQQN for insulin receptor drastically decreased, whereas QNAQYLR inhibited autophosphorylation of insulin receptor as well as EGFR. In conclusion, NYQQN is not an ATP-competitive inhibitor and the binding site of this peptide appears to be novel as a tyrosine kinase inhibitor. NYQQN could be a promising seed for the development of anti-cancer drugs having specificity for EGFR. 相似文献
10.
Noriko Koyama Toru Hayashi Kenji Ohno Larry Siu Edward W. Gresik Masanori Kashimata 《Development, growth & differentiation》2008,50(7):565-576
Although growth factor signaling is required for embryonic development of organs, individual signaling mechanisms regulating these organotypic processes are just beginning to be defined. We compared signaling activated in fetal mouse submandibular glands (SMGs) by three growth factors, epidermal growth factor (EGF), fibroblast growth factor (FGF) 7, or FGF10, and correlated it with specific events of branching morphogenesis. Immunoblotting showed that EGF strongly stimulated phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and weakly stimulated phosphorylation of phospholipase C γ 1 (PLC γ 1) and phosphatidylinositol-3 kinase (PI3K) in cultured E14 SMG. However, FGF7 and FGF10 stimulated phosphorylation of both PLC γ 1 and PI3K, but elicited only minimal phosphorylation of ERK-1/2. Morphological study of mesenchyme-free SMG epithelium cultured in Matrigel revealed that EGF induced cleft formation of endpieces, that FGF7 stimulated both cleft formation and stalk elongation, but that FGF10 induced only stalk elongation. In mesenchyme-free SMG epithelium cultured with EGF, FGF7 and FGF10, U0126 (MEK inhibitor) completely blocked cleft formation, whereas U73122 (PLC γ 1 inhibitor) suppressed stalk elongation. These finding suggest that EGF stimulates cleft formation and drives branch formation via ERK-1/2, and that FGF7 stimulates both cleft formation and stalk elongation via PLC γ 1 and partly via ERK-1/2, but that FGF10 stimulates stalk elongation mainly via PLC γ 1. 相似文献
11.
Kathryn M. Ferguson Chun Hu Mark A. Lemmon 《Protein science : a publication of the Protein Society》2020,29(6):1331-1344
Insulin receptor (IR) and the epidermal growth factor receptor (EGFR) were the first receptor tyrosine kinases (RTKs) to be studied in detail. Both are important clinical targets—in diabetes and cancer, respectively. They have unique extracellular domain compositions among RTKs, but share a common module with two ligand‐binding leucine‐rich‐repeat (LRR)‐like domains connected by a flexible cysteine‐rich (CR) domain (L1‐CR‐L2 in IR/domain, I‐II‐III in EGFR). This module is linked to the transmembrane region by three fibronectin type III domains in IR, and by a second CR in EGFR. Despite sharing this conserved ligand‐binding module, IR and EGFR family members are considered mechanistically distinct—in part because IR is a disulfide‐linked (αβ)2 dimer regardless of ligand binding, whereas EGFR is a monomer that undergoes ligand‐induced dimerization. Recent cryo‐electron microscopy (cryo‐EM) structures suggest a way of unifying IR and EGFR activation mechanisms and origins of negative cooperativity. In EGFR, ligand engages both LRRs in the ligand‐binding module, “closing” this module to break intramolecular autoinhibitory interactions and expose new dimerization sites for receptor activation. How insulin binds the activated IR was less clear until now. Insulin was known to associate with one LRR (L1), but recent cryo‐EM structures suggest that it also engages the second LRR (albeit indirectly) to “close” the L1‐CR‐L2 module, paralleling EGFR. This transition simultaneously breaks autoinhibitory interactions and creates new receptor‐receptor contacts—remodeling the IR dimer (rather than inducing dimerization per se) to activate it. Here, we develop this view in detail, drawing mechanistic links between IR and EGFR. 相似文献
12.
Addition of tumor promoting phorbol esters, such as phorbol 12-myristate 13-acetate (PMA), to many cell lines results in a decrease of 125I-epidermal growth factor (EGF) binding and increased serine/threonine phosphorylation of the EGF receptor in a process termed transmodulation. It is, however, unclear whether or not receptor phosphorylation is causally related to the inhibition of high affinity EGF binding. We have investigated the significance of phosphorylation/dephosphorylation events in the mechanism of PMA-induced transmodulation using the adenylate cyclase activator cholera toxin and the serine/threonine protein phosphatase inhibitor okadaic acid. In Rat-1 fibroblasts treated at 37 degrees C, PMA induced a rapid decrease in EGF binding which persisted for 3 hours. In contrast, cells exposed to PMA in the presence of cholera toxin exhibited a marked recovery of binding within 60 minutes. The PMA-stimulated decrease in binding correlated with a rapid increase in the phosphorylation state of the EGF receptor. While phosphorylation of the receptor was sustained at an elevated level for at least three hours in cells receiving PMA alone, EGF receptor phosphorylation decreased between 1 and 3 hours in cells treated with PMA and cholera toxin. Furthermore, the cholera toxin-stimulated return of EGF binding was inhibited by treatment with the phosphatase inhibitor okadaic acid. These results suggest that a cholera toxin-activated phosphatase can increase binding capacity of the transmodulated EGF receptor in Rat-1 cells. Cholera toxin treatment elicited a qualitatively similar response in cells transmodulated by platelet-derived growth factor (PDGF). Okadaic acid antagonized the natural return of binding observed in cells stimulated with PDGF alone, indicating that a dephosphorylation event may be required for the recovery of normal EGF binding after receptor transmodulation. 相似文献
13.
14.
15.
Nicola Nylander Lynne T. Smith Robert A. Underwood Michael Piepkorn 《In vitro cellular & developmental biology. Animal》1998,34(2):182-188
Summary Much of the autonomous growth of cultured keratinocytes is attributable to the signaling of amphiregulin, a heparin-binding
autocrine growth factor, through the epidermal growth factor receptor. Emerging evidence suggests, moreover, that the membrane
proteoglycan, CD44, is a cofactor for the interaction of heparin-binding ligands with their receptors. This model was evaluated
by characterizing the patterns of the immunolabeled molecules in cultured human neonatal keratinocytes, to test the hypothesis
that involvement in a common function results in coordinate segregation within or on the cell. The molecules were localized
by double immunofluorescence labeling to detect amphiregulin and either the epidermal growth factor receptor or CD44, and
the immunostained products were imaged by scanning laser confocal microscopy. Both amphiregulin and the epidermal growth factor
receptor segregated to a perinuclear distribution and to intercellular contacts. In addition, amphiregulin localized to the
outer leading edge of colonies and focally to intranuclear sites. Metabolic blockade of proteoglycan sulfation with sodium
chlorate inhibited growth of the cells and concurrently enhanced the nuclear, but decreased the outer leading edge, labeling
for amphiregulin. There was no nuclear or perimeter labeling for the epidermal growth factor receptor. Cultures co-immunolabeled
for CD44 and amphiregulin exhibited variable perinuclear staining for both, but otherwise CD44 was distributed to intercellular
contacts. The intercellular localizations of CD44 with amphiregulin and of amphiregulin with the epidermal growth factor receptor
were strongly concordant. These data are consistent with a concerted function at intercellular contacts, where cytokine signaling
is mediated via receptor binding and possibly regulated by the CD44 proteoglycan as cofactor. The intranuclear and perimeter
labeling of amphiregulin, however, suggests that this cytokine has additional functions, both in the nucleus and as a matrix
receptor. 相似文献
16.
AIMS: To examine the secretion of human epidermal growth factor (hEGF) by Corynebacterium glutamicum. METHODS AND RESULTS: We recently showed that a novel protein-secretion system in C. glutamicum could produce Streptomyces mobaraensis transglutaminase. In the present study, the industrially important protein hEGF was secreted into the culture medium in a fully active form by C. glutamicum and accumulated at a rate of up to 156 mg l(-1) day(-1). CONCLUSIONS: These results demonstrated that the hEGF protein could be secreted in an active form by C. glutamicum. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data confirmed that the pharmaceutically important human protein hEGF could be efficiently secreted in an active form by the C. glutamicum protein-expression system. Moreover, we demonstrated that this bacterium has potential as a host for the industrial-scale production of human proteins. 相似文献
17.
Epidermal growth factor induces changes of interaction between epidermal growth factor receptor and actin in intact cells 总被引:1,自引:0,他引:1
The epidermal growth factor receptor (EGFR) is a cyto-skeleton-binding protein. Although purified EGFR can interact with acting in vitro and normally at least 10% of EGFR exist in the insoluble cytoskeleton fraction of A431 cells, interaction of cytosolic EGFR with actin can only be visualized by fluorescence resonance energy transfer when epidermal growth factor presents in the cell medium. Results indicate that the correct orientation between EGFR and actin is important in the signal transduction process. 相似文献
18.
Anna-Maria Stock Stephan A Hahn Gabriele Troost Bernd Niggemann Kurt S Zänker Frank Entschladen 《Experimental cell research》2014
Pancreatic cancer is characterized by aggressive local invasion and early metastasis formation. Active migration of the pancreatic cancer cells is essential for these processes. We have shown previously that the pancreatic cancer cells lines CFPAC1 and IMIM-PC2 show high migratory activity, and we have investigated herein the reason for this observation. Cell migration was assessed using a three-dimensional, collagen-based assay and computer-assisted cell tracking. The expression of receptor tyrosine kinases was determined by flow-cytometry and cytokine release was measured by an enzyme-linked immunoassay. Receptor function was blocked by antibodies or pharmacological enzyme inhibitors. Both cells lines express the epidermal growth factor receptor (EGFR) as well as its family-member ErbB2 and the platelet-derived growth factor receptor (PDGFR)α, whereas only weak expression was detected for ErbB3 and no expression of PDGFRβ. Pharmacological inhibition of the EGFR or ErbB2 significantly reduced the migratory activity in both cell lines, as did an anti-EGFR antibody. Interestingly, combination of the latter with an anti-PDGFR antibody led to an even more pronounced reduction. Both cell lines release detectable amounts of EGF. Thus, the high migratory activity of the investigated pancreatic cancer cell lines is due to autocrine EGFR activation and possibly of other receptor tyrosine kinases. 相似文献
19.
In mycoplasmal pneumonia, the bronchi are histopathologically filled with polymorphonuclear leukocytes. The EGFR pathway is involved in IL-8 production. We investigated the contribution of the EGFR pathway to IL-8 production by bronchial epithelial cells (A549) stimulated with Mp-Ag. The IL-8 production by A549 cells stimulated with Mp-Ag was decreased by the addition of an EGFR kinase inhibitor or transfection with small interfering RNA against EGFR. The levels of epiregulin mRNA in A549 cells were increased by stimulation with Mp-Ag. In conclusion, the EFGR pathway participates in IL-8 production by bronchial epithelial cells stimulated with Mp-Ag. 相似文献
20.
The process of TNF-induced cytotoxicity is complex but appears to be mediated through a TNF-specific cell surface receptor. Recent evidence suggests that TNF action on tumor cells may be antagonized by epidermal growth factor (EGF) and other EGF-receptor modulatory peptides implicating a role for EGF-R in the process of TNF-induced cytotoxicity. In the present report, we investigated the biochemical actions of TNF on several biochemical events known to occur in the process of EGF signal transduction in intact cells. The actions of TNF were compared directly to those of EGF in both TNF-sensitive and -resistant tumor cell lines. In TNF-sensitive ME-180 cervical carcinoma cells, TNF (20 ng/ml) stimulated the tyrosine protein kinase activity of the EGF-receptor (EGF-R) fivefold when measured by receptor autophosphorylation in an immune complex kinase assay. TNF activation of EGF-R kinase activity in ME-180 was measurable 10 min after TNF incubation and enzymatic activity remained elevated 20 min after TNF addition. Activation of the receptor by TNF correlated with increased 32P incorporation into EGF-R protein when receptor was immunoprecipitated from 32P-equilibrated cells following a 20 min incubation with TNF. Acid hydrolysis of EGF-R protein isolated from TNF-treated ME-180 cells demonstrates an increase in the phosphotyrosine content of EGF-R when compared to receptor isolated from untreated cells. The results suggest that TNF increased EGF-R tyrosine protein kinase activity and the state of EGF-receptor tyrosine phosphorylation in a manner similar to that reported for EGF. However, TNF does not appear to be structurally related to EGF since TNF was unable to directly activate EGF-R when incubated with extensively washed immunoprecipitates of EGF-R. In TNF-resistant T24 bladder carcinoma cells, TNF failed to alter EGF-R tyrosine protein kinase activity although both EGF and phorbol ester were shown to modulate the enzymatic activity of the receptor in these cells. These results indicate that the ability of TNF to modulate EGF-R kinase in target cells may correlate with its cytotoxic actions on TNF-sensitive tumor cells. Other biochemical activities associated with the induction or regulation of cellular growth were examined in TNF- or EGF-treated tumor cells. EGF stimulated a rapid 8-16-fold increase in the expression of the proto-oncogene c-myc when analyzed by dot-blot analysis of total cellular RNA or Northern blot hybridization of polyadenylated RNA. TNF treatment failed to alter c-myc expression in ME-180 cells when analyzed by either technique.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献