首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of polyhydroxybutyrate (PHB) involves a multigene pathway consisting of thiolase, reductase and synthase genes. In order to simplify this pathway for plant-based expression, a library of thiolase and reductase gene fusions was generated by randomly ligating a short core linker DNA sequence to create in-frame fusions between the thiolase and reductase genes. The resulting fusion constructs were screened for PHB formation in Escherichia coli. This screen identified a polymer-producing candidate in which the thiolase and reductase genes were fused via a 26-amino-acid linker. This gene fusion, designated phaA-phaB, represents an active gene fusion of two homotetrameric enzymes. Expression of phaA-phaB in E. coli and Arabidopsis yielded a fusion protein observed to be the expected size by Western blotting techniques. The fusion protein exhibited thiolase and reductase enzyme activities in crude extracts of recombinant E. coli that were three-fold and nine-fold less than those of the individually expressed thiolase and reductase enzymes, respectively. When targeted to the plastid, and coexpressed with a plastid-targeted polyhydroxyalkanoate (PHA) synthase, the fusion protein enabled PHB formation in Arabidopsis, yielding roughly half the PHB formed in plants expressing individual thiolase, reductase and synthase enzymes. This work represents a first step towards simplifying the expression of the PHB biosynthetic pathway in plants.  相似文献   

2.
Fertilization is a general feature of eukaryotic uni- and multicellular organisms to restore a diploid genome from female and male gamete haploid genomes. In angiosperms, polyploidization is a common phenomenon, and polyploidy would have played a major role in the long-term diversification and evolutionary success of plants. As for the mechanism of formation of autotetraploid plants, the triploid-bridge pathway, crossing between triploid and diploid plants, is considered as a major pathway. For the emergence of triploid plants, fusion of an unreduced gamete with a reduced gamete is generally accepted. In addition, the possibility of polyspermy has been proposed for maize, wheat and some orchids, although it has been regarded as an uncommon mechanism of triploid formation. One of the reasons why polyspermy is regarded as uncommon is because it is difficult to reproduce the polyspermy situation in zygotes and to analyze the developmental profiles of polyspermic triploid zygotes. Recently, polyspermic rice zygotes were successfully produced by electric fusion of an egg cell with two sperm cells, and their developmental profiles were monitored. Two sperm nuclei and an egg nucleus fused into a zygotic nucleus in the polyspermic zygote, and the triploid zygote divided into a two-celled embryo via mitotic division with a typical bipolar microtubule spindle. The two-celled proembryos further developed and regenerated into triploid plants. These suggest that polyspermic plant zygotes have the potential to form triploid embryos, and that polyspermy in angiosperms might be a pathway for the formation of triploid plants.  相似文献   

3.
F Constabel 《In vitro》1976,12(11):743-748
Somatic hybridization in higher plants has come into focus since methods have been established for protoplast fusion and uptake of foreign DNA and organelles by protoplasts. Polyethylene glycol (PEG) was an effective agent for inducing fusion. Treatment of protoplasts with PEG resulted in 5 to 30% heterospecific fusion products. Protoplasts of different species, genera and even families were compatible when fused. A number of protoplast combinations (soybean + corn, soybean + pea, soybean + tobacco, carrot + barley, etc.) provided fusion products which underwent cell division and callus formation. Fusion products initially were heterokaryocytes. In dividing heterokaryocytes, random distribution of mitotic nuclei was observed to be accompanied by multiple wall formation and to result in chimeral callus. Juxtaposition of mitotic nuclei suggested nuclear fusion and hybrid formation. Fusion of heterospecific interphase nuclei was demonstrated in soybean + pea and carrot + barley heterokaryons. Provided parental protoplasts carry suitable markers, the fusion products can be recognized. For the isolation and cloning of hybrid cells, fusion experiments must be supplemented with a selective system. Complementation of two non-allelic genes that prevent or inhibit growth under special culture conditions appears as the principle on which to base the selection of somatic hybrids. As protoplasts of some species have been induced to regenerate entire plants, the development of hybrid plants from protoplast fusion products is feasible and has already been demonstrated for tobacco.  相似文献   

4.
目的:利用HPT-mCherry融合标签加速转基因筛选过程。方法:构建HPT-mCherry融合表达载体,采用农杆菌介导的转基因技术获得转基因植株,并利用荧光显微镜观察转基因愈伤和植株。结果:HPT-mCherry融合标签可用于转基因愈伤的筛选和转基因植株的鉴定;HPT与mCherry融合后互不影响,一方面可利用潮霉素抗性筛选愈伤,另一方面能通过观察mCherry红色荧光蛋白进行鉴定。结论:利用HPT-mCherry融合标签可以快速有效地鉴定并得到转基因阳性植株。  相似文献   

5.
Summary Somatic hybridization in higher plants has come into focus since methods have been established for protoplast fusion and uptake of foreign DNA and organelles by protoplasts. Polyethylene glycol (PEG) was an effective agent for inducing fusion. Treatment of protoplasts with PEG resulted in 5 to 30% heterospecific fusion products. Protoplasts of different species, genera and even families were compatible when fused. A number of protoplast combinations (soybean + corn, soybean + pea, soybean + tobacco, carrot + barley, etc.) provided fusion products which underwent cell division and callus formation. Fusion products initially were heterokaryocytes. In dividing heterokaryocytes, random distribution of mitotic nuclei was observed to be accompanied by multiple wall formation and to result in chimeral callus. Juxtaposition of mitotic nuclei suggested nuclear fusion and hybrid formation. Fusion of heterospecific interphase nuclei was demonstrated in soybean + pea and carrot + barley heterokaryons. Provided parental protoplasts carry suitable markers, the fusion products can be recognized. For the isolation and cloning of hybrid cells, fusion experiments must be supplemented with a selective system. Complementation of two nonallelic genes that prevent or inhibit growth under special culture conditions appears as the principle on which to base the selection of somatic hybrids. As protoplasts of some species have been induced to regenerate entire plants, the development of hybrid plants from protoplast fusion products is feasible and has already been demonstrated for tobacco. Presented in the formal symposium on Somatic Cell Genetics at the 27th Annual Meeting of the Tissue Culture Association, Philadelphia, Pennsylvania, June 7–10, 1976.  相似文献   

6.
以下胚轴,带柄子叶和茎尖为外植体,利用根癌农杆菌和基因枪法将抗虫融合蛋白基因(Bt-CpTI)导入甘蓝品种“中甘8号”,得到了13株卡那霉素抗性植株,经PCR扩增反应和Southern blot分子验证表明;农杆菌介导转化下胚轴和带柄子叶来源的Ⅰ型抗性植株均为转基因植株,而农杆菌介导转化茎尖外植体得到的Ⅱ型抗性植株属“假阳性”植株,基因枪介导转化茎尖的2株Ⅲ型植株中,有1株是非转基因植株,经胰蛋白酶抑制剂活性分析和抗虫测试证明,部分转基因植株有较高的胰蛋白酶抑制剂活性和抗菜青虫能力。  相似文献   

7.
Manipulation of starch biosynthesis/degradation and formation of novel molecules in storage organs of plants through genetic engineering is an attractive but technically challenging goal. We report here, for the first time, that starch was degraded and glucose and fructose were produced directly when crushed potato tubers expressing a starch degrading bifunctional gene were heated for 45 minutes at 65 degrees C. To achieve this, we have constructed a fusion gene encoding the thermostable enzymes: alpha-amylase (Bacillus stearothermophilus) and glucose isomerase (Thermus thermophilus). The chimeric gene was placed under the control of the granule-bound-starch synthase promoter. This enzymatic complex produced in transgenic tubers was only active at high temperature (65 degrees C). More than 100 independent transgenic potato plants were regenerated. Molecular analyses confirmed the stable integration of the chimeric gene into the potato genome. The biochemical analyses performed on young and old tubers after high-temperature treatment (65 degrees C) revealed an increase in the formation rate of fructose and glucose by a factor of 16.4 and 5. 7, respectively, in the transgenic tubers as compared to untransformed control tubers. No adverse discernible effect on plant development and metabolism including tuber formation and starch accumulation was observed in the transgenic plants before heat treatment. Our results demonstrate that it is possible to replace starch degradation using microbial enzymes via a system where the enzymes are produced directly in the plants, but active only at high temperature, thus offering novel and viable strategies for starch-processing industries.  相似文献   

8.
Metalloendoproteases have been implicated in a variety of fusion processes including plasma membrane fusion and exocytosis. As a prerequisite to skeleton formation in the sea urchin embryo, primary mesenchyme cells undergo fusion via filopodia to form syncytia. The spicule is formed within the syncytial cable by matrix and mineral deposition. To investigate the potential involvement of a metalloendoprotease in spiculogenesis, the effect of inhibitors of this enzyme on skeleton formation was studied. Experiments with primary mesenchyme cells in vitro and in normal embryos revealed that skeleton formation was blocked by these inhibitors. These findings implicate a metalloendoprotease in spiculogenesis; such an enzyme has been demonstrated in homogenates of primary mesenchyme cells. The most likely site of action of the metalloendoprotease is at the cell membrane fusion stage and/or at subsequent events requiring membrane fusion.  相似文献   

9.
After wounding, the moss Physcomitrella patens emits fatty acid derived volatiles like octenal, octenols and (2E)-nonenal. Flowering plants produce nonenal from C18-fatty acids via lipoxygenase and hydroperoxide lyase reactions, but the moss exploits the C20 precursor arachidonic acid for the formation of these oxylipins. We describe the isolation of the first cDNA (PpHPL) encoding a hydroperoxide lyase from a lower eukaryotic organism. The physiological pathway allocation and characterization of a downstream enal-isomerase gives a new picture for the formation of fatty acid derived volatiles from lower plants. Expression of a fusion protein with a yellow fluorescent protein in moss protoplasts showed that PpHPL was found in clusters in membranes of plastids. PpHPL can be classified as an unspecific hydroperoxide lyase having a substrate preference for 9-hydroperoxides of C18-fatty acids but also the predominant substrate 12-hydroperoxy arachidonic acid is accepted. Feeding experiments using arachidonic acid show an increase in the 12-hydroperoxide being metabolized to C8-aldehydes/alcohols and (3Z)-nonenal, which is rapidly isomerized to (2E)-nonenal. PpHPL knock out lines failed to emit (2E)-nonenal while formation of C8-volatiles was not affected indicating that in contrast to flowering plants, PpHPL is only involved in formation of a specific subset of volatiles.  相似文献   

10.
Glutathione S-transferase (GST) from Schistosoma japonicum, which is widely used for the production of fusion proteins in the cytoplasm of Escherichia coli, was employed as a functional fusion module that effects dimer formation of a recombinant protein and confers enzymatic reporter activity at the same time. For this purpose GST was linked via a flexible spacer to the C-terminus of the thiol-protease inhibitor cystatin, whose binding properties for papain were to be studied. The fusion protein was secreted into the bacterial periplasm by means of the OmpA signal peptide to ensure formation of the two disulfide bonds in cystatin. The formation of wrong crosslinks in the oxidizing milieu was prevented by replacing three of the four exposed cysteine residues in GST. Using the tetracycline promoter for tightly controlled gene expression the soluble fusion protein could be isolated from the periplasmic protein fraction. Purification to homogeneity was achieved in one step by means of an affinity column with glutathione agarose. Alternatively, the protein was isolated via streptavidin affinity chromatography after the Strep-tag had been appended to its C terminus. The GST moiety of the fusion protein was enzymatically active and the kinetic parameters were determined using glutathione and 1-chloro-2,4-dinitrobenzene as substrates. Furthermore, strong binding activity for papain was detected in an ELISA. The signal with the cystatin-GST fusion protein was much higher than with cystatin itself, demonstrating an avidity effect due to the dimer formation of GST. The quaternary structure was further confirmed by chemical crosslinking, which resulted in a specific reaction product with twice the molecular size. Thus, engineered GST is suitable as a moderately sized, secretion-competent fusion partner that can confer bivalency to a protein of interest and promote detection of binding interactions even in cases of low affinity.  相似文献   

11.
The expression of a fusion protein formed between the avian infectious bronchitis virus M protein and the bacterial enzyme beta-glucuronidase (GUS) in plants promotes the formation of new organization of the endoplasmic reticulum in tobacco plants. This unusual organization of the membranes, never present in nontransformed plants, has been explained by the oligomerization of the GUS domains of the IBVM-GUS fusion proteins. These specific organized membranes could have broad implications for biotechnology since their formation could be used as a mechanism for retaining and accumulating resident proteins in specific and discrete membrane compartments. In this study, we have shown that the unusual organization of native membranes due to overexpression of the IBVM-GUS fusion gene in tobacco transgenic plants and calli is present at higher levels in plant cell suspensions than in plant tissues. In these cell suspensions, IBVM-GUS protein was continuously synthesized and accumulated throughout the cell culture. An enrichment of the chimeric IBVM-GUS protein corresponding to a five-fold increase in the microsomal fractions was achieved and the GUS enzyme did not show any modification on enzyme kinetics. However, the GUS activity could be differentially distributed in the fractions eluted at different pH suggesting differences in the surface topography of histidine residues for this recombinant GUS.  相似文献   

12.
The intercellular translocation of chromatin material along with other cytoplasmic contents among the proximate meiocytes lying in close contact with each other commonly referred as cytomixis was reported during microsporogenesis in Phaseolus vulgaris L., a member of the family Fabaceae. The phenomenon of cytomixis was observed at three administered doses of gamma rays viz. 100, 200, and 300 Gy respectively in the diploid plants of Phaseolus vulgaris L. The gamma rays irradiated plants showed the characteristic feature of inter-meiocyte chromatin/chromosomes transmigration through various means such as channel formation, beak formation or by direct adhesion between the PMC’s (Pollen mother cells). The present study also reports the first instance of syncyte formation induced via cytomictic transmigration in Phaseolus vulgaris L. Though the frequency of syncyte formation was rather low yet these could play a significant role in plant evolution. It is speculated that syncyte enhances the ploidy level of plants by forming 2n gametes and may lead to the production of polyploid plants. The phenomenon of cytomixis shows a gradual inclination along with the increasing treatment doses of gamma rays. The preponderance of cytomixis was more frequent during meiosis I as compared to meiosis II. An interesting feature noticed during the present study was the channel formation among the microspores and fusion among the tetrads due to cell wall dissolution. The impact of this phenomenon is also visible on the development of post-meiotic products. The formation of heterosized pollen grains; a deviation from the normal pollen grains has also been reported. The production of gametes with unbalanced chromosomes is of utmost importance and should be given more attention in future studies as they possess the capability of inducing variations at the genomic level and can be further utilized in the improvement of germplasm.  相似文献   

13.
Urethral seam formation and hypospadias   总被引:4,自引:0,他引:4  
Knowledge of the formation of the normal male urethra may elucidate the etiology of hypospadias. We describe urethral formation in the mouse, show the similarities and relevance to human urethral development, and introduce the concept of the epithelial seam formation and remodeling during urethral formation. Three mechanisms may account for epithelial seam formation: (1) epithelial-mesenchymal transformation similar to that described in the fusion of the palatal shelves, (2) apoptosis, and/or (3) tissue remodeling via cellular migration. Urethral development in the embryonic mouse (14-21 days of gestation) was compared with urethral formation in embryonic human specimens (8-16 weeks of gestation) by using histology, immunohistochemistry, and three-dimensional reconstruction. The urethra forms by fusion of the epithelial edges of the urethral folds, giving a midline epithelial seam. The epithelial seam is remodeled via cellular migration into a centrally located urethra and ventrally displaced remnant of epithelial cells. The epithelial seam is remodeled by narrowing approximately at its midpoint, with subsequent epithelial migration into the urethra or penile skin. The epithelial cells are replaced by mesenchymal cells. This remodeling seam displays a narrow band (approximately 30 microns wide) of apoptotic activity corresponding to the mesenchymal cells and not to epithelial cells. No evidence was seen of the co-expression of cytokeratin and mesenchymal markers (actin or vimentin). Urethral seam formation occurs in both the mouse and the human. Our data in the mouse support the hypothesis that seam transformation occurs via cellular migration and not by epithelial mesenchymal transformation or epithelial apoptosis. We postulate that disruption of epithelial fusion remodeling, and cellular migration leads to hypospadias.  相似文献   

14.
Immunotoxins are genetically engineered fusion proteins of an antibody Fv fragment and a toxin from bacteria or plants, which function as anti-cancer therapeutics. Here, we describe a new generation of immunotoxins in which both proteins do not form a single fusion protein but are coupled specifically via cysteine-containing polyionic fusion peptides. The engineered Pseudomonas exotoxin PE38 was N-terminally fused to the peptide E(8)C. In combination with the disulfide-stabilized Fv fragment of the tumor-specific antibody B3, which was extended by the peptide R(8)CP, the fusion peptides ensured a specific and covalent coupling of the Fv fragment and the toxin. The resulting immunotoxin was as active and as specific as an immunotoxin consisting of a fusion protein of the same antibody fragment connected to the toxin.  相似文献   

15.
Summary Rice (Oryza sativa L., 2n=24) anthers containing microspores in the early-uninucleate to first-mitosis stages were induced successfully to develop into plants in vitro through an intermediary step of callus formation. Callus initiation occurred with highest frequency in anthers containing mid-uninucleate microspores. The callus derived from different stages of microspore development differed in the potential to differentiate into plants. The plants regenerated from pollen callus were predominantly haploid or diploid; polyploid and aneuploid plants were relatively infrequent. The first division of the uninucleate microspores was asymmetrical, resulting in the formation of large vegetative and small generative nuclei. The vegetative nucleus divided repeatedly and assumed the major role in the formation of callus, whereas the generative nucleus degenerated rapidly. Simultaneous division of the two nuclei was observed in a few pollen grains. Nuclear fusion during the very initial stages of pollen development was postulated to account for the occurrence of the diploid and polyploid plants. This work was supported by the National Science Council, Republic of China.  相似文献   

16.
Plant defensins are small, basic cysteine-rich peptides that can inhibit the growth of a broad range of fungi or bacteria at micro-molar concentrations. They have been introduced as transgenes into different species to enhance host resistance to pathogens. In this study, a fusion gene of two defensins, Trigonella foenum-graecum defensin 2 (Tfgd2) and Raphanus sativus antifungal protein 2 (RsAFP2) fused by a linker peptide of a polyprotein precursor from Impatiens balsamina was introduced into tobacco (Nicotiana tabacum var. Xanthi) via Agrobacterium-mediated leaf section transformation. Putative transgenic plants were confirmed by PCR analysis and integration of the fusion gene was confirmed by Southern blotting. RT-PCR analysis showed that the fusion gene was expressed in several confirmed transgenic plants. Western blotting analysis of crude protein extracts from leaves of the transgenic plants with anti-Tfgd2 and anti-RsAFP2 antibodies exhibited an 8 and 9 kDa bands corresponding to size of the fusion gene and confirmed the expression of fusion protein. When the leaves of transgenic plants were challenged with Rhizoctonia solani and Phytophthora parasitica var. nicotianae pathogens, they showed enhanced levels of disease resistance along with resistance to the generalist herbivore, Spodoptera litura larvae compared to control. Our results demonstrate that Tfgd2–RsAFP2 fusion protein is effective in protecting the transgenic plants against fungal and insect pathogens.  相似文献   

17.
The secretory pathway of plants is a network of organelles that communicate via vesicle transport. This process involves budding on donor membranes followed by their targeting to, recognition by and fusion with the acceptor membrane. Protein sorting through the plant secretory pathway is a process that requires the specific recognition of signals by receptor molecules. For soluble proteins, recognition takes place in the lumen of the secretory pathway. The sorting receptors must mediate signal transduction across the membrane to convey the information about the presence of cargo molecules to cytosolic factors, which regulate the formation of transport vesicles. Recently, a number of key elements in this process have been identified, providing tools to study protein sorting at the molecular level.  相似文献   

18.
19.
20.
In vitro clustering and multiple fusion among macrophage endosomes   总被引:4,自引:0,他引:4  
Early steps of receptor-mediated endocytosis appear to require the fusion of endosomes with each other. Recently, these fusion events have been reconstituted in vitro using vesicle preparations from J774 macrophages which have internalized ligands via the mannose receptor (Diaz, R., Mayorga, L., and Stahl, P. (1988) J. Biol. Chem. 263, 6093-6100). The present studies indicate that endosomes first form clusters when incubated under fusogenic conditions. Aggregation state was determined by electron microscopy using vesicles containing ligand-coated colloidal gold of different sizes previously internalized via the mannose receptor. Aggregation required cytosol and ATP. Afterwards, the limiting membranes of the vesicles composing these aggregates undergo multiple fusion and bring about the formation of large diameter vesicles that maintained the same density as endosomes when analyzed by Percoll gradient sedimentation. These large diameter vesicles were no longer fusogenic in the fusion assay. Multiple fusion was determined morphologically by the co-localization of three different size colloidal gold vesicles inside endocytic vesicles and biochemically by the fusion-dependent formation of triple immune complexes between three endocytic ligands internalized by receptor-mediated endocytosis: anti-dinitrophenol mouse IgG and dinitrophenol-derivatized beta-glucuronidase, ligands for the mannose receptor, and aggregated rabbit anti-mouse IgG, a ligand for the macrophage Fc receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号