首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene redundancy is frequently found in higher plants and complicates genetic analysis. In this study, a method referred to as 'differential RNA interference (dRNAi)' was used to investigate the psbP gene family in Nicotiana tabacum. PsbP is a membrane-extrinsic subunit of PSII and plays important roles in the water splitting reaction. N. tabacum has four psbP isogenes and the function of each isogene has not yet been characterized in vivo. To obtain transgenic tobacco plants with various amounts and compositions of PsbP members, the psbP isogenes were differentially silenced by RNA interference (RNAi) using the 3'-untranslated region (UTR) as a silencing trigger (dRNAi). In addition, the extra psbP genes without the 3'-UTR were complementarily transformed into the above silenced plants, which accumulated PsbP originating from the exogenous gene while differential silencing of the endogenous target was maintained. By using dRNAi and subsequent complementation (substitution) in dRNAi, we clearly demonstrated that, regardless of the of PsbP members that were accumulated, PSII activity was linearly correlated with the total amount of PsbP. Therefore, we concluded that the protein functions of the PsbP members in N. tabacum are equivalent in vivo, whereas full expression of the four isogenes is required for optimum PSII activity. These results demonstrate that the use of dRNAi and subsequent complementation/substitution in dRNAi would provide a new experimental approach for studying the function of multigene families in plants.  相似文献   

2.
S B Hua  S K Dube  S D Kung 《Génome》1993,36(3):483-488
Photosystem II psbP protein of the oxygen-evolving complex is involved in the photosynthetic oxygen evolution in plants. Four psbP polypeptides were detected in Nicotiana tabacum on a two-dimensional gel by immunostaining the proteins with antiserum against the pea psbP Comparison of the protein patterns of psbP from N. tabacum and its ancestral parents, N. sylvestris and N. tomentosiformis, indicated that each of the ancestral parents has contributed a pair of psbP proteins. This was supported by Southern hybridization results, which suggested that psbP in Nicotiana is encoded by a gene family consisting of four members in N. tabacum and two members each in N. glauca, N. langsdorffii, N. sylvestris, and N. tomentosiformis. A scheme of molecular evolution of the psbP genes in Nicotiana is also proposed.  相似文献   

3.
Two homologous Nicotiana tabacum genes NtTOM1 and NtTOM3 have been identified. These genes encode polypeptides with amino acid sequence similarity to Arabidopsis thaliana TOM1 and TOM3, which function in parallel to support tobamovirus multiplication. Simultaneous RNA interference against NtTOM1 and NtTOM3 in N. tabacum resulted in nearly complete inhibition of the multiplication of Tomato mosaic virus and other tobamoviruses, but did not affect plant growth or the ability of Cucumber mosaic virus to multiply. As TOM1 and TOM3 homologues are present in a variety of plant species, their inhibition via RNA interference should constitute a useful method for generating tobamovirus-resistant plants.  相似文献   

4.
In many plant RNA viruses, Domains 1, 2 and 3 are conserved in replicase proteins. In order to examine the interference of viral replication by the Domain 1 sequence, we generated transgenic plants transformed with DNA corresponding to the Domain 1 sequence of the TMV 126 kDa protein. This DNA sequence includes the TMV RNA from nucleotides 1 to 2,149, which comprises both the 5'-untranslated and methyl transferase region. The transgenic plants obtained showed complete resistance to TMV infection. The presence of the Domain 1 sequence in the plants completely prevented local necrosis in Nicotiana tabacum cv. Xanthi nc, and any systemic development of symptoms in Nicotiana tabacum Xanthi upon TMV inoculation. Most transgenic plants sustained the conferred resistance even under TMV inoculum concentrations up to as high as 1,000 microg/ml. To detect any accumulation of TMV coat protein or viral RNA in infected transgenic plants, immunochemical tests and Northern blot analyses were carried out. Neither viral RNA or coat protein was detectable in the systemic leaves of the completely resistant transgenic plants, whereas they were accumulated in large quantities in all of the control plants. Because of the conservation of Domain 1 in many plant RNA viruses, the acquisition of resistance to virus infection using the Domain 1 sequence appears to be a very effective strategy for breeding of viral resistant plants.  相似文献   

5.
Three cDNA clones coding for eukaryotic translation initiation factor 4A, eIF-4A, were isolated from a Nicotiana plumbaginifolia root cDNA library by heterologous screening. The clones comprise two distinct gene classes as two clones are highly similar while the third is divergent. The genes belong to a highly conserved gene family, the DEAD box supergene family, although the divergent clone contains a DESD box rather than the characteristic DEAD box. The two clones are representatives of separate small multigene families in both N. plumbaginifolia and N. tabacum. Representatives of each family are coordinately expressed in all plant organs examined. The 47 kD polypeptide product of one clone, overexpressed in E. coli, crossreacts immunologically with a rabbit reticulocyte eIF-4A polyclonal antibody. Taken together the data suggest that the two Nicotiana eIF-4A genes encode translation initiation factors. The sequence divergence and the coordinate expression of the two Nicotiana eIF-4A families provide an excellent system to determine if functionally distinct eIF-4A polypeptides are required for translation initiation in plants.  相似文献   

6.
A 21-base pair RNA duplex that perfectly matches an endogenous target mRNA selectively degrades the mRNA and suppresses gene expression in mammalian tissue culture cells. A single base mismatch with the target is believed to protect the mRNA from degradation, making this type of interference highly specific to the targeted gene. A short RNA with mismatches to a target sequence present in multiple copies in the 3'-untranslated region of an exogenously expressed gene can, however, silence it by translational repression. Here we report that a mismatched RNA, targeted to a single site in the coding sequence of an endogenous gene, can efficiently silence gene expression by repressing translation. The antisense strand of such a mismatched RNA requires a 5'-phosphate but not a 3'-hydroxyl group. G.U wobble base pairing is tolerated as a match for both RNA degradation and translation repression. Together, these findings suggest that a small inhibitory RNA duplex can suppress expression of off-target cellular proteins by RNA degradation or translation repression. Proper design of experimental small inhibitory RNAs or a search for targets of endogenous micro-RNAs must therefore take into account that these short RNAs can affect expression of cellular genes with as many as 3-4 base mismatches and additional G.U mismatches.  相似文献   

7.
The plasma membrane of higher plants contains a H(+)-ATPase as its major ion pump. This enzyme belongs to the P-type family of cation-translocating enzymes and generates the proton-motive force that drives solute uptake across the plasma membrane. In Arabidopsis thaliana the plasma membrane H(+)-ATPase is encoded by a multigene family (Harper, J. F., Surowy, T. K., and Sussman, M. R. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 1234-1238). The complete genomic sequence of a third Arabidopsis H(+)-ATPase isoform (referred to as AHA2) is presented here, and the predicted protein sequence is compared with previously published AHA1, AHA3, and tobacco Nicotiana plumbaginifolia NP1 isoforms. The AHA2 gene is most similar to AHA1, with predicted proteins containing 95% amino acid identity. The mRNA start site and 5'-untranslated sequence for AHA2 were determined from cDNA amplified by the polymerase chain reaction. The 5' region contains a 23-base pair (bp) polypyrimidine sequence and a short upstream reading frame. In comparison with the 16 introns reported in AHA3, AHA2 is missing one intron in the 5'-untranslated region and a second intron in the C-terminal coding region. An unusually large intron for Arabidopsis (greater than 1000 bp) is present at the beginning of the coding sequence of both AHA2 and AHA3. In the 3'-untranslated sequence of AHA1 and AHA2 but not AHA3, there is a 65-bp region of 85% identity and a second shorter region of 16-bp identity harboring an unusual putative poly(A) addition signal (dTTTGAAGAAACAAGGC). Northern blot analysis indicates that AHA2 mRNA relative to total cellular RNA is expressed at significantly higher levels in root tissue as compared with shoot tissue.  相似文献   

8.
9.
10.
Three types of mutation were introduced into the sequence encoding the GDD motif of the putative replicase component of potato virus X (PVX). All three mutations rendered the viral genome completely noninfectious when inoculated into Nicotiana clevelandii or into protoplasts of Nicotiana tabacum (cv. Samsun NN). In order to test whether these negative mutations could inactivate the viral genome in trans, the mutant genes were expressed in transformed N.tabacum (cv. Samsun NN) under control of the 35S RNA promoter of cauliflower mosaic virus and the transformed lines were inoculated with PVX. In 10 lines tested in which the GDD motif was expressed as GAD or GED there was no effect on susceptibility to PVX. In two of four lines transformed to express the ADD form of the conserved motif, the F1 and F2 progeny plants were highly resistant to infection by PVX, although only to strains closely related to the source of the transgene. The resistance was associated with suppression of PVX accumulation in the inoculated and systemic leaves and in protoplasts of the transformed plants, although some low level viral RNA production was observed in the inoculated but not the systemic leaves when the inoculum was as high as 100 or 250 micrograms/ml PVX RNA. These results suggest for a plant virus, as reported previously for Q beta phage, that virus resistance may be engineered by expression of dominant negative mutant forms of viral genes in transformed cells.  相似文献   

11.
In higher plants, a small nuclear gene family encodes mitochondrial as well as chloroplast RNA polymerases (RNAP) homologous to the bacteriophage T7-enzyme. The Arabidopsis genome contains three such RpoT genes, while in monocotyledonous plants only two copies have been found. Analysis of Nicotiana tabacum, a natural allotetraploid, identified six different RpoT sequences. The study of the progenitor species of tobacco, N. sylvestris and N. tomentosiformis, uncovered that the sequences represent two orthologous sets each of three RpoT genes (RpoT1, RpoT2 and RpoT3). Interestingly, while the organelles are inherited exclusively from the N. sylvestris maternal parent, all six RpoT genes are expressed in N. tabacum. GFP-fusions of Nicotiana RpoT1 revealed mitochondrial targeting properties. Constructs containing the amino-terminus of RpoT2 were imported into mitochondria as well as into plastids. Thus, the dual-targeting feature, first described for Arabidopsis RpoT;2, appears to be conserved among eudicotyledonous plants. Tobacco RpoT3 is targeted to chloroplasts and the RNA is differentially expressed in plants lacking the plastid-encoded RNAP. Remarkably, translation of RpoT3 mRNA has to be initiated at a CUG codon to generate a functional plastid transit peptide. Thus, besides AGAMOUS in Arabidopsis, Nicotiana RpoT3 provides a second example for a non-viral plant mRNA that is exclusively translated from a non-AUG codon.  相似文献   

12.
R J Hayes  K W Buck 《Cell》1990,63(2):363-368
A soluble RNA-dependent RNA polymerase was isolated from Nicotiana tabacum plants infected with cucumber mosaic virus (CMV), which has a genome of three positive-strand RNA components, 1, 2, and 3. The purified polymerase contained two virus-encoded polypeptides and one host polypeptide. Polymerase activity was completely dependent on addition of CMV RNA as template, and the products of reaction were single-stranded (ss) RNA and double-stranded (ds) RNA, corresponding to RNAs 1, 2, and 3, and a subgenomic RNA (RNA 4) derived from RNA 3. The ratio of ssRNA to dsRNA was about 5:1, and the ssRNA was shown to be predominantly the positive strand. This demonstrates the complete replication of a eukaryotic virus RNA in vitro by a template-dependent RNA polymerase.  相似文献   

13.
14.
15.
烟草花药特异表达基因启动子的克隆及序列分析   总被引:9,自引:0,他引:9  
通过PC,R扩增,从烟草(Nicotiana tabacum cv.NC89)中克隆了花药绒毡层中特异表达基因的启动于,序列分析表明,该启动子含1303个核苷酸,与已报道的序列比较,核苷酸的同源性为99.4%。  相似文献   

16.
17.
18.
Structure and organization of mouse U3B RNA functional genes   总被引:8,自引:0,他引:8  
  相似文献   

19.
One type of RNA editing involves the conversion of adenosine residues into inosine in double-stranded RNA through the action of adenosine deaminases acting on RNA (ADAR). A-to-I RNA editing of the coding sequence could result in synthesis of proteins not directly encoded in the genome. ADAR edits also non-coding sequences of target RNAs, such as introns and 3'-untranslated regions, which may affect splicing, translation, and mRNA stability. Three mammalian ADAR gene family members (ADAR1-3) have been identified. Here we investigated phenotypes of mice homozygous for ADAR1 null mutation. Although live ADAR1-/- embryos with normal gross appearance could be recovered up to E11.5, widespread apoptosis was detected in many tissues. Fibroblasts derived from ADAR1-/- embryos were also prone to apoptosis induced by serum deprivation. Our results demonstrate an essential requirement for ADAR1 in embryogenesis and suggest that it functions to promote survival of numerous tissues by editing one or more double-stranded RNAs required for protection against stress-induced apoptosis.  相似文献   

20.
针对SARS冠状病毒重要蛋白的siRNA设计(英)   总被引:4,自引:0,他引:4  
RNA干涉(RNA interference, RNAi)是一种特异性地导致转录后基因沉默的现象,在哺乳动物细胞中小分子干扰RNA双链体(small interfering RNA duplexes, siRNA duplexes)可以有效地诱导RNAi现象,为一些疾病的治疗开辟了新的途径.针对SARS冠状病毒(SARS coronavirus, SARS-CoV)中编码5个主要蛋白质的基因,用生物信息学的方法设计了348条候选siRNA靶标.在理论上,相应的siRNA双链体能特异地抑制SARS-CoV靶基因的表达,同时不会影响人体细胞基因的正常表达,这为进一步siRNA类药物的实验研究提供了理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号