首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palmitoylation at cysteine residues is the only known reversible form of lipidation and has been implicated in protein membrane association as well as function. Many palmitoylated proteins have regulatory roles in dynamic cellular processes, including membrane fusion. Recently, we identified Env7 as a conserved and palmitoylated protein kinase involved in negative regulation of membrane fusion at the lysosomal vacuole. Env7 contains a palmitoylation consensus sequence, and substitution of its three consecutive cysteines (Cys13–Cys15) results in a non-palmitoylated and cytoplasmic Env7. In this study, we further dissect and define the role(s) of individual cysteines of the consensus sequence in various properties of Env7 in vivo. Our results indicate that more than one of the cysteines serve as palmitoylation substrates, and any pairwise combination is essential and sufficient for near wild type levels of Env7 palmitoylation, membrane localization, and phosphorylation. Furthermore, individually, each cysteine can serve as a minimum requirement for distinct aspects of Env7 behavior and function in cells. Cys13 is sufficient for membrane association, Cys15 is essential for the fusion regulatory function of membrane-bound Env7, and Cys14 and Cys15 are redundantly essential for protection of membrane-bound Env7 from proteasomal degradation. A role for Cys14 and Cys15 in correct sorting at the membrane is also discussed. Thus, palmitoylation at the N-terminal cysteines of Env7 directs not only its membrane association but also its stability, phosphorylation, and cellular function.  相似文献   

2.
Autoacylation of myelin proteolipid protein with acyl coenzyme A   总被引:7,自引:0,他引:7  
Rat brain myelin proteolipid protein (PLP) is known to contain long chain, covalently bound fatty acids. In the course of characterizing the mechanism of acylation, we found that the isolated PLP, in the absence of any membrane fraction, was esterified after incubation with [3H]palmitoyl coenzyme A (CoA). This observation demonstrated that the protein acts as both an acylating enzyme and an acceptor. Thus, acylation occurs by an autocatalytic process. The possibility of a separate acyltransferase that copurifies with PLP was essentially excluded by adding brain subcellular fractions to the reaction mixtures and by changing the isolation procedure. After deacylation, the protein was acylated at a 4-fold greater rate, suggesting that the original sites were reacylated. The palmitoyl-CoA concentration followed Michaelis kinetics, confirming that spontaneous acylation was not occurring. Pulse-chase experiments indicated that the reaction entails net addition of acyl groups. Although fatty acids are bound via an O-ester linkage, free SH groups are required in the reaction. Denaturation of the protein by sodium dodecyl sulfate or heat inhibits the reaction, whereas cerulenin has little or no effect. PO, the major protein in peripheral nerve myelin, is also an acylated protein, but it was not labeled upon incubation of either peripheral myelin or the isolated protein with [3H]palmitoyl-CoA, demonstrating that it is acylated by a different route. Several synthetic peptides derived from PLP sequences with sites known to be acylated in vivo as well as a series of deacylated PLP tryptic peptides were not labeled, indicating that integrity of the protein is required for acylation. Limited proteolysis and peptide mapping showed that the same sites are acylated in vitro or in vivo, suggesting that the autocatalytic acylation reaction is physiological.  相似文献   

3.
Hepatitis C virus core protein is the viral nucleocapsid of hepatitis C virus. Interaction of core with cellular membranes like endoplasmic reticulum (ER) and lipid droplets (LD) appears to be involved in viral assembly. However, how these interactions with different cellular membranes are regulated is not well understood. In this study, we investigated how palmitoylation, a post-translational protein modification, can modulate the targeting of core to cellular membranes. We show that core is palmitoylated at cysteine 172, which is adjacent to the transmembrane domain at the C-terminal end of core. Site-specific mutagenesis of residue Cys172 showed that palmitoylation is not involved in the maturation process carried out by the signal peptide peptidase or in the targeting of core to LD. However, palmitoylation was shown to be important for core association with smooth ER membranes and ER closely surrounding LDs. Finally, we demonstrate that mutation of residue Cys172 in the J6/JFH1 virus genome clearly impairs virion production.  相似文献   

4.
Brain slices from 20-day-old rats were incubated with [3H]palmitate for 2 hours in the absence or presence of the NO-donors S-nitroso-N-acetyl-penicillamine (SNAP), ethyl-2-[hydroxyimino]-5-nitro-3-hexeneamide (NOR-3), 4-phenyl-3-furoxan carbonitrile (PFC) and sodium nitroprusside (SNP). Each of these drugs reduced the incorporation of [3H]palmitate into myelin proteolipid protein (PLP) in a concentration-dependent manner, SNP being the most active. The effect of SNAP was prevented by the NO-scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide). Furthermore, decayed-SNAP, sodium nitrite and N- nitrosopyrrolidine were inactive, suggesting that free NO and/or some of its direct oxidation products are the active molecular species. The amount of fatty acids bound to PLP and the rate of deacylation were unaffected by NO. Although NO diminished the number of thiols in brain and myelin proteins, with the formation of both nitrosothiols and disulfides, these changes did not parallel those in PLP acylation. In contrast, NO was effective at reducing the palmitoylation of brain and myelin lipids, and this effect along with that of PLP, was ascribed to a decrease in palmitoyl-CoA levels. The NO-induced reduction in acyl-CoA concentration was due to the decline in ATP levels, while the amount of [3H]palmitate incorporated into the tissue, the activity of palmitoyl-CoA ligase and palmitoyl-CoA hydrolase, and the concentration of CoASH were unaltered by the drugs. Experiments with endogenously-synthesized [18O]fatty acids confirmed that NO affects predominantly the ATP-dependent palmitoylation of PLP. In conclusion, the inhibitory action of NO on the fatty acylation of PLP is indirect and caused by energy depletion.  相似文献   

5.
We have investigated the effect of documented protein palmitoylation inhibitors on the fatty acylation and intracellular transport of myelin proteolipid protein (PLP). To this end, brain slices from 20-day-old rats were incubated with either [3H]palmitate or [3H]leucine in the presence or absence of various concentrations of 2-fluoropalmitate (FP), cerulenin (CER), or tunicamycin (TM). FP ( 10 M) decreased the cellular uptake of [3H]palmitate and consequently reduced the labeling of palmitoyl-CoA, glycerolipids and PLP. CER ( 1 mM) reduced the palmitoylation of PLP with a concomitant decline in protein thiols. Consistent with being a fatty acyl-CoA analogue, TM ( 200 M) diminished the palmitoylation of PLP and lipids while increasing the amount of [3H]palmitoyl-CoA. Although both CER and TM decreased protein palmitoylation, only the latter affected the appearance of newly synthesized PLP into myelin. Because TM, but not CER, also reduced the formation of lipids, it is concluded that palmitoylation is not required for intracellular transport. Finally, comparison of the effect of TM in brain slices and in a cell-free system suggests that palmitoylation of PLP in whole cells may be an enzymatic process.  相似文献   

6.
Synaptosomal-associated protein of 23 kDa (SNAP-23) plays an important role during regulated exocytosis of various inflammatory mediators, stored in secretory granules, from mast cells in response to physiological triggers. It is however synthesized as a soluble protein, and the mechanisms by which free SNAP-23 gets peripherally associated with membrane for the regulation of exocytosis, are poorly defined. SNAP-23 contains a hydrophobic domain with five closely spaced cysteines which get palmitoylated, and we show that SNAP-23 cysteine mutants show differential membrane association when transfected in rat basophilic leukemia (RBL) mast cells. SNAP-23 Cys mutant, devoid of all five cysteines, and SNAP-23 P119A (proline to alanine) mutant, that likely interferes with palmitoylation of SNAP-23 by palmitoyl transferases are completely cytosolic. Mutating specific cysteines (Cys; C) to leucine or phenylalanine (L or F; retains hydrophobicity but lacks palmitoylation) partially decreases the membrane association of SNAP-23 which is further hampered by alanine (A; has lesser hydrophobicity, and lacks palmitoylation) mutation at C79, C80 or C83 position. Cloning a transmembrane domain MDR31–145 from multidrug resistance protein into SNAP-23 Cys mutant is able to partially restore its membrane association. Regulated exocytosis studies using co-transfected human growth hormone (hGH) secretion reporter plasmid revealed that overexpression of SNAP-23 Cys and P119A mutants significantly inhibits the overall extent of exocytosis from RBL mast cells, whereas expression of SNAP-23 Cys-MDR31–145 fusion protein is able to restore exocytosis. These results establish that the cysteine-rich domain of SNAP-23 regulates its membrane association and thereby also regulates exocytosis from mast cells.  相似文献   

7.
Acylation of endogenous myelin proteolipid protein with different acyl-CoAs   总被引:8,自引:0,他引:8  
Fatty acyltransferase activity that catalyzes the transfer of palmitic acid from palmitoyl-CoA to the endogenous myelin proteolipid protein has been demonstrated in isolated rat brain myelin. Optimum enzyme activity for the acylation of proteolipid protein was obtained in 0.1% Triton X-100, 2 mM MgCl2, and 1 mM dithiothreitol at a pH of 7.5 and at 37 degrees C. Other detergents had little or no effect on the reaction whereas acylation was completely abolished by sodium dodecyl sulphate (0.1%). Pulse-chase experiments indicated that the reaction involves the net addition of fatty acid to the protein and not a rapid fatty acid exchange. The rate of acylation was linear up to 30 min, indicating that the concentration of endogenous protein acceptor was constant. Under these conditions and at short time periods, the enzyme activity versus acyl-CoA concentration showed a hyperbolic curve. The apparent Km and Vmax for palmitoyl-CoA was 41 microM and 115 pmol/mg protein/min. Similar values were obtained for stearoyl and oleoyl-CoA, whereas myristoyl-CoA showed a lower specificity for the enzyme. The acyl-CoA specificity was also studied in competition experiments using several saturated and unsaturated fatty acid-CoAs. The product of the reaction was identified as myelin proteolipid protein and the fatty acid was shown to be attached to the protein via an ester linkage. Limited proteolysis and peptide mapping showed that the same sites on the proteolipid protein were acylated when the reaction was carried out in isolated myelin preparations or in brain tissue slices, suggesting physiological importance for the in vitro acylation of endogenous myelin proteolipid protein.  相似文献   

8.
Vacuole fusion requires Sec18p-dependent acylation of the armadillo-repeat protein Vac8p that has been isolated with cis-SNARE complexes. To gain more insight into the mechanism of acylation, we analyzed the palmitoylation reaction on isolated vacuoles or in vacuolar detergent extracts. Recombinant Vac8p is palmitoylated when added to vacuoles and is anchored to membranes after modification. The palmitoyl acyltransferase (PAT) extracted from vacuolar membranes is functional in detergent extracts and shows all characteristics of an enzymatic activity: It modifies exogenous Vac8p in a temperature-, dose- and time-dependent manner, and is sensitive to bromo-palmitate, a known inhibitor of protein palmitoylation in vivo. Importantly, PAT is specific for palmitoyl-CoA, since myristoyl- and stearyl-CoA can compete with labeled Pal-CoA only at 10-fold higher amounts.  相似文献   

9.
It has been known for some time that P0, the major intrinsic protein in PNS myelin, contains sulfate. The position of sulfate has been described for beef PNS myelin, but rat PNS myelin differs somewhat from that of the beef, therefore an investigation of the location of sulfate in rat P0 was undertaken. Weanling rat nerves were incubated with [3H] amino acid mixture and [35S]O4, and purified myelin was prepared, and the proteins separated on polyacrylamide gels. The bulk of the [35S]O4 was incorporated into P0, but smaller peaks of sulfate label were found in the higher molecular weight proteins. With tunicamycin in the incubation mixture, sulfate incorporation was inhibited. Incubation of the labeled myelin mixture with endo F or glycanase resulted in total loss of sulfate label on P0, therefore all of the [35S]O4 was incorporated into the oligosaccharide chain, with none on the polypeptide. Castanospermine and deoxymannojirimycin inhibited [35S]O4 incorporation into P0, but no inhibition was exerted by swainsonine. These results indicate that sulfate resides in the core of the oligosaccharide chain, with none in the terminal region. Such a structure would correlate with the lack of an HNK-1 epitope, absent in the rat, but found in P0 of many species.Abbreviations Used Endo H endoglycosidase H - Endo F endoglycosidase F - GalNAc N-acetyl galactosamine - GlcNAc N-acetyl glucosamine - MAG myelin-associated glycoprotein - Man mannose Special issue dedicated to Dr. Marjorie B. Lees.  相似文献   

10.
Palmitoylation is a reversible posttranslational modification which is involved in the regulation of several membrane proteins such as β2-adrenergic receptor, p21ras and trimeric G-protein α-subunits. This covalent modification could be involved in the regulation of the numerous membrane proteins present in the blood-brain barrier capillaries. The palmitoylation activity present in brain capillaries was characterized using [3H]palmitate labeling followed by chloroform methanol precipitation. Palmitate solubilizing agents such as detergents and bovine serum albumin (BSA), were used for optimizing activity. Some palmitoylated substrates were identified using [3H]palmitate labeling followed by immunoprecipitation with specific antibodies. Two optimal palmitate solubilization conditions were found, one involves cell permeabilization (Triton X-100) and the other represents a more physiological condition where membrane integrity is conserved (BSA). Sensitivity to the cysteine modifier N-ethylmaleimide and to hydrolysis, using hydroxylamine or alkaline methanolysis, indicated that palmitic acid was bound to the proteins by a thioester bond. Maximal palmitate incorporation was reached after 30 or 60 min of incubation in the presence of Triton or BSA, respectively. Depalmitoylation was observed in the presence of BSA, but not with detergents. The palmitoylation reaction was optimal at pH 8 or 9 in the presence of Triton or BSA, respectively, but palmitoylated substrates were detectable over a wide range of pH values. In the presence of Triton X-100, the addition of ATP, CoA and Mg2+ to the incubation medium increased palmitoylation by up to 80-fold. Two palmitoylated substrates were identified, a 42 kDa G-protein α subunit and p21ras. The study shows that the utilization of palmitate solubilizing agents is essential to measure in vitro palmitoylation in brain capillaries. Several palmitoylated proteins are present in the blood-brain barrier including five major substrates of 12, 21, 35, 42 and 55 kDa. It is suggested that palmitoylation could play a crucial role in the regulation of brain capillary function, since the two substrates identified in this study are known to be involved in signal transduction, vesicular transport and cell differentiation.  相似文献   

11.
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization and subsequent recyclization in slowly recycling endosomes involving its direct physical interaction with Rab11a. Moreover, interaction with Rab11a localizes to a 22-residue putative Rab11 binding domain (RBD) within the carboxyl-terminal tail of the hIP, proximal to the transmembrane 7 (TM7) domain. Because the proposed RBD contains Cys308 and Cys311, in addition to Cys309, that are known to undergo palmitoylation, we sought to identify the structure/function determinants of the RBD, including the influence of palmitoylation, on agonist-induced trafficking of the hIP. Through complementary approaches in yeast and mammalian cells along with computational structural studies, the RBD was localized to a 14-residue domain, between Val299 and Leu312, and proposed to be organized into an eighth α-helical domain (α-helix 8), comprising Val299–Val307, adjacent to the palmitoylated residues at Cys308–Cys311. From mutational and [3H]palmitate metabolic labeling studies, it is proposed that palmitoylation at Cys311 in addition to agonist-regulated deacylation at Cys309 > Cys308 may dynamically position α-helix 8 in proximity to Rab11a, to regulate agonist-induced intracellular trafficking of the hIP. Moreover, Ala-scanning mutagenesis identified several hydrophobic residues within α-helix 8 as necessary for the interaction with Rab11a. Given the diverse membership of the G protein-coupled receptor superfamily, of which many members are also predicted to contain an α-helical 8 domain proximal to TM7 and, often, adjacent to palmitoylable cysteine(s), the identification of a functional role for α-helix 8, as exemplified as an RBD for the hIP, is likely to have broader significance for certain members of the superfamily.  相似文献   

12.
Abstract: In this study, we have investigated the effect of neuronal depolarization on the palmitoylation of myelin lipids. For this purpose, brain slices from 60-day-old rats were incubated with [3H]palmitate for 1 h in the presence or absence of various drugs. Veratridine (100 µM) reduced the incorporation of [3H]palmitate into all brain glycerolipids by 40–50%, whereas the labeling of sphingolipids was unaffected. Similar results were obtained by using [3H]glycerol as a precursor, demonstrating that veratridine also causes a reduction in the de novo synthesis of glycerolipids. Both tetrodotoxin (1 µM) and ouabain (1 mM) prevented the effect of veratridine, indicating that it is mediated through the opening of voltage-gated sodium channels and involves the stimulation of the Na+/K+ pump. Decreased levels of both ATP, due to activation of the Na+,K+-ATPase, and the precursor palmitoyl-CoA were found in the veratridine-treated slices, thus explaining the reduction in lipid synthesis. Neuronal depolarization also decreased the synthesis of lipids present in the myelin fraction. The relatively high specific radioactivity of myelin lipids and the results from both repeated purification experiments and mixing experiments ruled out the possibility that the radioactive lipids present in myelin could derive from contamination with other subcellular fraction(s). Because neither mature oligodendrocytes nor myelin is known to express voltage-dependent Na+ channels, it is conceivable that the effect of veratridine on myelin glycerolipid metabolism occurs by an indirect mechanism such as an increase in the extracellular [K+]. However, the presence of 60 mM KCl in the medium did not affect the acylation of either brain or myelin lipids. These results raise questions as to the absence of sodium channels in myelinating oligodendrocytes and/or myelin.  相似文献   

13.
Chemical synthesis of kurtoxin, a T-type calcium channel blocker   总被引:1,自引:0,他引:1  
Kurtoxin isolated from the venom of scorpion, Parabuthus transvaalicus, is a 63-residue peptide with four intramolecular disulfide bonds which inhibits low-threshold T-type Ca2+channels. Kurtoxin was synthesized by native chemical ligation involving the coupling of (1--26)-thioester peptide and Cys27-(28--63)-peptide. The former was synthesized by standard solid-phase peptide synthesis (SPPS) with Boc chemistry, while the latter was sequentially assembled from three protected segments onto a resin-bound C-terminal segment in a chloroform--phenol mixed solvent followed by deprotection reaction using HF. Each protected segment used for the coupling on a solid support was prepared on an N-[9-(hydroxymethyl)-2-fluorenyl] succinamic acid (HMFS) resin and detached from the resin by treatment with 20% Et 3N in DMF to produce it in the form of an α-carboxylic acid. Synthetic kurtoxin obtained after the oxidative folding reaction was found to be identical with the natural product by means of several analytical procedures, and its disulfide structure was determined for the first time to be Cys12-Cys61, Cys16-Cys37, Cys23-Cys44 and Cys27-Cys46 by peptide mapping, sequence analysis and mass measurements.  相似文献   

14.
The incubation of sciatic nerve slices in Krebs Ringer bicarbonate (KRB) buffer (pH 7.4) at 37°C, or the incubation of freshly isolated myelin in ammonium bicarbonate buffer (pH 8), resulted in the generation of a 24kDa protein with a concomitant decrease of PO protein. The conversion of PO into 24kDa protein was blocked by heating isolated myelin at 100°C for 5 min suggesting that the reaction is enzyme mediated. Inclusion of the protease inhibitors and chelating agent to isolated myelin did not prevent the formation of 24kDa protein. Similarly, addition of CaCl2 to isolated myelin did not accentuate the formation of 24kDa protein suggesting that the conversion of PO into 24kDa protein may not be due to Ca2+ activated protease. It is postulated that the formation of 24kDa protein may be due to neutral protease and/or metalloproteinase associated with the PNS myelin. 24kDa protein was purified and characterized. The N-terminal sequence of 1–17 amino acid residues of 24kDa protein was identical to PO. 24kDa protein was immunostained and immunoprecipitated with anti-PO antiserum indicating the immunological similarities between PO and 24kDa protein. Labeling of 24kDa protein with [35S]methionine provided evidence that PO may be in all probability cleaved between Met-168 and Met-193. Further studies were carried out to demonstrate that 24kDa protein was phosphorylated, glycosylated and acylated like PO. Phosphorylation of 24kDa protein in the nerve slices was increased five-fold by phorbol esters and phosphoserine was the only phosphoamino acid identified after partial acid hydrolysis of 24kDa protein. These results suggested that serine residue phosphorylated by protein kinase C may be located in amino acid residues 1-168. 24kDa protein was stained with periodic Schiff reagent. In addition, 24kDa protein was fucosylated and the fucosylation of 24kDa protein was inhibited (70%) by tunicamycin, providing evidence that it is N-glycosylated. Recently, it was demonstrated that both PO and 24kDa protein were fatty acylated with [3H]palmitic acid in the nerve slices and fatty acids are covalently linked to these proteins (Agrawal, H.C. and Agrawal, D. 1989, Biochem. J. 263:173–177). The time course of inhibition of acylation by cycloheximide of 24kDa protein was identical to PO. Cycloheximide inhibited acylation of PO and 24kDa protein by 61% and 58% respectively, whereas, monensin had little affect on the fatty acylation of these proteins. Less [3H]palmitic acid and14C-amino acids were incorporated into 24kDa protein when compared to PO between 5–30 min after incubation of the nerve slices. However, more radioactivity was incorporated into 24kDa protein after 60 min when compared to PO under identical conditions. These results provided evidence of a precursor-product relationship between PO and 24kDa protein. Therefore, PO may be cleaved into 24kDa protein in the myelin membrane following its acylation and glycosylation in the Schwann cells.  相似文献   

15.
The apparently unique fatty acylation mechanism that underlies activation (maturation) of Escherichia coli haemolysin and related toxins is further clarified by investigation of the interaction of protoxin with the specific acyltransferase HlyC. Using deleted protoxin variants and protoxin peptides as substrates in an in vitro maturation reaction dependent upon HlyC and acyl-acyl carrier protein, two independent HlyC recognition domains were identified on the 1024-residue protoxin, proA, and they were shown to span the two target lysine residues K564 (KI) and K690 (KII) that are fatty acylated. Each domain required 15–30 amino acids for basal recognition and 50–80 amino acids for wild-type acylation. The two domains (FAI and FAII) competed with each other in cis and in trans for HlyC. The affinity of FAI for HlyC is approximately four times greater than that of FAII resulting in an overall 80% acylation at KI and 20% acylation at KII in both whole toxin and peptide derivatives. No other proA sequences were required for toxin maturation, and excess Ca2+ prevented acylation of both lysines. The lack of primary sequence identity between FAI and FAll domains in proA and among corresponding sites on related protoxins currently precludes an explanation of the basis of HlyC recognition by proA.  相似文献   

16.
—Gangliosides have been isolated from myelin obtained from three types of peripheral nerve: bovine spinal roots, bovine sciatic nerve and human sciatic nerve. Yields in most cases were 218–287 μg of lipid-bound sialic acid per g myelin, less than half that previously obtained from CNS myelin. Myelin accounted for approx 60% of total ganglioside present in whole spinal root. The human sample contained only N-acetylneuraminic acid but the two bovine preparations contained that as well as N-glycolylneuraminic acid; N-acetylglucosamine and N-acetylgalactosamine were both present in all three preparations. Sphingosine was the major long-chain base in each preparation while 4-eicosasphingenine (d20:1) comprised about 14% in the two bovine samples and 3% in the human sample. The major fatty acids in all preparations were 16:0, 18:0, 22:0, 24:0 and 24:1. Sialosylgalactosyl ceramide (G7), a ganglioside characteristic of CNS myelin, was not detected in any of the PNS samples. The majority of gangliosides in bovine spinal root myelin were monosialo species, although the structures differed in some respects from those of CNS myelin. The molar concentration of lipid-bound sialic acid in PNS myelin is roughly equivalent to that of the P1 basic protein.  相似文献   

17.
Proteolipid protein (PLP) and DM-20 were intensely labeled after immunoprecipitation of total cellular proteins and myelin proteins labeled with [35S]methionine in nerve slices. These results provided evidence that PLP and DM-20 are incorporated into the myelin membrane following their synthesis in Schwann cells. In contrast, PLP and DM-20 were not fatty acylated after incubation of the nerve slices with [3H]palmitic acid, however, PO glycoprotein and 24kDa protein were heavily fatty acylated. The lack of fatty acylation of PLP and DM-20 in the peripheral nervous system suggests that fatty acyltransferase responsible for their acylation is absent or non-functional in the peripheral nervous system.  相似文献   

18.
Posttranslational acylation of several chloroplast proteins with palmitic acid was recently demonstrated in Spirodela oligorrhiza (AK Mattoo, M Edelman [1987] Proc Natl Acad Sci USA 84: 1497-1501). We have now identified an in vivo acylated, soluble protein having an apparent Mr of 10 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as an acylated form of acyl carrier protein (ACP). This 10-kilodalton protein is present in low abundance, and its acylation is light-stimulated. Turnover of the acyl moiety but not the apo-protein is rapid in the light. The acylated 10-kilodalton protein coelectrophoreses with in vitro synthesized palmitoyl-acyl carrier protein and is immunoprecipitated from soluble extracts with an antibody raised against spinach ACP. Cerulenin, an inhibitor of β-ketoacyl-ACP synthetase, inhibited in vivo acylation of Spirodela ACP. Cell-free extracts of Spirodela plants were able to catalyze the transfer of palmitate from palmitoyl-CoA to ACP, suggesting the existence in higher plants of a pathway for acylation of ACP that involves transacylation from acyl-CoA.  相似文献   

19.
Protein zero (P0), a transmembrane glycoprotein, accounts for over 50% of the total protein in PNS myelin. The extracellular domain of P0 (P0-ED) is similar to the immunoglobulin variable domain, carrying one acceptor sequence for N-linked glycosylation. The x-ray diffraction analysis of PNS myelin has demonstrated reversible transitions that depend on pH and ionic strength, resulting in three distinct structures characterized by widths of about 36 Å, 50 Å (native), and 90 Å between the extracellular surfaces of the membranes. In the current work, we considered the constraints imposed by these x-ray diffraction data on the orientation of P0-ED, and we propose how this immunoglobulin-like domain could be accommodated in the variable widths of the extracellular space between myelin membranes. The modeling made use of the finding that β-strand predictions for P0-ED are virtually superimposable with those of the VH domain of the phosphocholine-binding immunoglobulin M603 of mouse, which has a similar number of residues as P0-ED and a structure that has been solved crystallographically. The dimensions of P0-ED from the space-filling model, developed using PC- based molecular modeling software, were found to be 44 Å× 25 Å× 23 Å. On the assumption that neither the shape nor the orientation of P0-ED changes appreciably, then the different widths at the extracellular apposition would easily accommodate P0-ED from apposed membranes if the molecules were oriented so that the β- strands were approximately perpendicular to the membrane surface. The apposed P0-EDs would fully overlap at the closest apposition of the membranes, partially overlap in the native state, and align end to end in the incompletely swollen state. The P0-ED regions analogous to the complementarity-determining regions of immunoglobulins can account for the recognition of P0-ED from apposed membranes in the incompletely swollen state. Two of the faces of P0-ED that show charge complementarity could account for the homophilic interactions of P0-ED from apposed membranes in the native state. This association can be stabilized further by hydrophobic interactions. The N- linked nonasaccharide after energy minimization fit into a cavity, which was at the base of P0-ED and which was lined with three positively charged residues. Thus, the carbohydrate may help to maintain the orientation of P0 at the membrane surface. Our model shows how the single immunoglobulin-like domain of P0 can account for distinct structural states of myelin membrane packing by homophilic interactions.  相似文献   

20.
Abstract: P0 glycoprotein, the major protein of PNS myelin, contains approximately 1 mol of covalently bound long-chain fatty acids. To determine the chemical nature of the fatty acid-protein linkage, P0 was labeled in rat sciatic nerve slices with [3H]palmitic acid and subsequently treated with various reagents. The protein-bound palmi-tate was released by incubation with the reducing agents dithiothreitol and 2-mercaptoethanol, and with 1 M hydrox-ylamine at pH 7.5. In addition, P0 was deacylated by treatment with 10 m M NaBH4 with the concomitant production of [3H]hexadecanol, indicating that the fatty acid is bound in a thioester linkage. This conclusion was supported further by the fact that deacylation with hydroxylamine generated free thiol groups, which were titrated with [14C]-iodoacetamide. To identify the cysteine residue involved in the thioester linkage, [14C]carboxyamidomethylated P0was digested with trypsin and the resulting peptides analyzed by reversed-phase HPLC. Identification of the radioactive protein fragments by amino acid analysis and amino-terminal peptide sequencing revealed that Cys153 in rat P0 glycoprotein is the acylation site. The acylated cysteine is located at the junction of the putative transmem-brane and cytoplasmic domains. This residue is also present in the P0 glycoprotein of other species, including human, bovine, mice, and chicken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号