首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess if cytochrome c oxidase could determine the response of mitochondrial respiration to changes in environmental temperature in ectotherms, we performed KCN titration of the respiration rate and cytochrome c oxidase activity in mitochondria from Arctic charr (Salvelinusfontinalis) muscle at four different temperatures (1 degrees C, 6 degrees C, 12 degrees C, and 18 degrees C). Our data showed an excess of cytochrome c oxidase activity over the mitochondrial state 3 respiration rate. Mitochondrial oxygen consumption rates reached approximately 12% of the cytochrome c oxidase maximal capacity at every temperature. Also, following titration, the mitochondrial respiration rate significantly decreased when KCN reached concentrations that inhibit almost 90% of the cytochrome c oxidase activity. This strongly supports the idea that the thermal sensitivity of the maximal mitochondrial respiration rate cannot be dictated by the effect of temperature on cytochrome c oxidase catalytic capacity. Furthermore, the strong similarity of the Q10s of mitochondrial respiration and cytochrome c oxidase activity suggests a functional or structural link between the two. The functional link could be coevolution of parts of the mitochondrial system to maintain optimal functions in most of the temperature range encountered by organisms.  相似文献   

2.
A possible function for the alternative (nonphosphorylating) pathway is to stabilize the reduction state of the ubiquinone pool (Qr/Qt), thereby avoiding an increase in free radical production. If the Qr/Qt were stabilized by the alternative pathway, then Qr/Qt should be less stable when the alternative pathway is blocked. Qr/Qt increased when we exposed roots of Poa annua (L.) to increasing concentrations of KCN (an inhibitor of the cytochrome pathway). However, when salicylhydroxamic acid, an inhibitor of the alternative pathway, was added at the same time, Qr/Qt increased significantly more. Therefore, we conclude that the alternative pathway stabilizes Qr/Qt. Salicylhydroxamic acid increasingly inhibited respiration with increasing concentrations of KCN. In the experiments described here the alternative oxidase protein was invariably in its reduced (high-activity) state. Therefore, changes in the reduction state of the alternative oxidase cannot account for an increase in activity of the alternative pathway upon titration with KCN. The pyruvate concentration in intact roots increased only after the alternative pathway was blocked or the cytochrome pathway was severely inhibited. The significance of the pyruvate concentration and Qr/Qt on the activity of the alternative pathway in intact roots is discussed.  相似文献   

3.
The activity of the alternative pathway can be affected by a number of factors, including the amount and reduction state of the alternative oxidase protein, and the reduction state of the ubiquinone pool. To investigate the importance of these factors in vivo, we manipulated the rate of root respiration by transferring the annual grass Poa annua L. from high-light to low-light conditions, and at the same time from long-day to short-day conditions for four days. As a result of the low-light treatment, the total respiration rate of the roots decreased by 45%, in vitro cytochrome c oxidase capacity decreased by 49%, sugar concentration decreased by 90% and the ubiquinone concentration increased by 31%, relative to control values. The absolute rate of oxygen uptake via the alternative pathway, as determined using the 18O-isotope fractionation technique, did not change. Conversely, the cytochrome pathway activity decreased during the low-light treatment; its activity increased upon addition of exogenous sugars to the roots. Interestingly, no change was observed in the concentration of the alternative oxidase protein or in the reduction state of the protein. Also, there was no change in the reduction state of the ubiquinone pool. In conclusion, the concentration and activity of the alternative oxidase were not changed, even under severe light deprivation.  相似文献   

4.
The contribution of individual plant mitochondrial respiratory pathways to total respiration is commonly assessed by titration with specific inhibitors of different components in the branched electron transport chain. A pathway's contribution is equal to the activity when the other branch is blocked by an inhibitor multiplied by the degree (0-1.0) to which this activity is engaged when both pathways are operating. According to Bahr and Bonner (1973. J. Biol. Chem. 218: 3441–3445) the plot of the activities of identical titrations, one performed in the absence and the other in the presence of a specific inhibitor of the other branch of the respiratory chain, yields a straight line whose slope indicates the engagement of the titrated pathway during uninhibited respiration. An initial slope of zero may occur if electron flux is diverted between pathways during titrations. However, beyond the breakpoint (representing the point of pathway saturation), a straight line is obtained with a slope representing engagement. This technique assumes that the kinetics of inhibiting a specific component of the respiratory chain are independent of the absolute rate of electron flux through the total pathway. To test this assumption, the activity of respiratory pathways in isolated soybean (Glycine max [L]. Merr. cv. Stevens) mitochondria was titrated with specific inhibitors of the cytochrome and alternative oxidases. Under these conditions, the electron flux through a given pathway was manipulated by poising the rate of succinate oxidation with the succinate dehydrogenase inhibitor malonate. Construction of activity plots in the presence versus absence of malonate failed to result in straight lines for either KCN (when titrating the cytochrome pathway) or salicylhydroxamic acid (when titrating the alternative pathway). Rather, the resultant plots were always curvilinear whenever the activity in the presence of malonate divided by the activity in the absence of malonate was less than 1.0. In no case could the real engagement of the pathway be precisely estimated from the titration data. Titrations of cytochrome pathway activity in isolated potato tuber (Solanum tuberosum L. cv. Sabago and Canabex) mitochondria (which lack the alternative oxidase) showed that as the inhibitor concentration was increased, so did the reduction status of the ubiquinone pool, to a new steady state. The dependence of inhibition kinetics on the rate of flux through the pathway, and the increase in ubiquinone pool reduction upon KCN addition, are explained in terms of the elasticity of component enzymes as outlined in the theory of metabolic control analysis. The implications of this finding for the use of titrations to estimate engagement of plant respiratory pathways are discussed.  相似文献   

5.
6.
The activity of the alternative pathway is affected by a number of factors, including the level and reduction state of the alternative oxidase (AOX) protein, and the reduction state of the ubiquinone pool. To investigate the significance of these factors for the rate of alternative respiration in vivo, we studied root respiration of six wild monocotyledonous grass species that were grown under identical controlled conditions. The activity of the alternative pathway was determined using the oxygen isotope fractionation technique. In all species, the AOX protein was invariably in its reduced (high activity) state. There was no correlation between AOX activity and AOX protein concentration, ubiquinone (total, reduced, or oxidized) concentration, or the reduction state of the ubiquinone pool. However, when some of these factors are combined in a linear regression model, a good fit to AOX activity is obtained. The function of the AOX is still not fully understood. It is interesting that we found a positive correlation between the activity of the alternative pathway and relative growth rate; a possible explanation for this correlation is discussed. Inhibition of the AOX (with salicylhydroxamic acid) decreases respiration rates less than the activity present before inhibition (i.e. measured with the 18O-fractionation technique).  相似文献   

7.
《BBA》2020,1861(2):148137
Electron transfer from all respiratory chain dehydrogenases of the electron transport chain (ETC) converges at the level of the quinone (Q) pool. The Q redox state is thus a function of electron input (reduction) and output (oxidation) and closely reflects the mitochondrial respiratory state. Disruption of electron flux at the level of the cytochrome bc1 complex (cIII) or cytochrome c oxidase (cIV) shifts the Q redox poise to a more reduced state which is generally sensed as respiratory stress. To cope with respiratory stress, many species, but not insects and vertebrates, express alternative oxidase (AOX) which acts as an electron sink for reduced Q and by-passes cIII and cIV. Here, we used Ciona intestinalis AOX xenotopically expressed in mouse mitochondria to study how respiratory states impact the Q poise and how AOX may be used to restore respiration. Particularly interesting is our finding that electron input through succinate dehydrogenase (cII), but not NADH:ubiquinone oxidoreductase (cI), reduces the Q pool almost entirely (>90%) irrespective of the respiratory state. AOX enhances the forward electron transport (FET) from cII thereby decreasing reverse electron transport (RET) and ROS specifically when non-phosphorylating. AOX is not engaged with cI substrates, however, unless a respiratory inhibitor is added. This sheds new light on Q poise signaling, the biological role of cII which enigmatically is the only ETC complex absent from respiratory supercomplexes but yet participates in the tricarboxylic acid (TCA) cycle. Finally, we delineate potential risks and benefits arising from therapeutic AOX transfer.  相似文献   

8.
Abstract. Pre-imbibed cocklebur ( Xanthium penn-sylvanicum Wallr.) seeds displayed bimodal germination-temperature responses with two optima at 8 and 33° C. Such germination responses occurred subsequent to bimodal respiration-temperature upsurges at lower and higher temperature regions. At lower temperatures, cocklebur seeds respired predominantly through a cyanide-sensitive cytochrome pathway. A rise in temperature resulted in a marked increase in flux via an alternative pathway, a propyl gallate- (PG) or benzohydroxamic-acid- (BHAM) sensitive pathway, thus resulting in an increase in the ratio of this pathway relative to the cytochrome pathway. Both an increased capacity for the alternative pathway and an increase in the ratio of this pathway to the cytochrome pathway were obtained when pre-imbibed seeds were exposed to either 8 or 33°C for a short period. The effects of low temperature were reduced as the exposure time was prolonged beyond 3d, resulting in a reduction in germination. Neither PG nor BHAM had an inhibitory effect on the chilling-induced germination, but the germination-stimulating effect of high temperatures was less pronounced in the presence of PG or BHAM. At high temperatures, on the other hand, KCN and NaN3 were ineffective or, rather, slightly inhibited germination. It was thus concluded that low and high temperatures exert their germination-stimulating effects by an essentially similar manner which increases fluxes both via the cytochrome pathway and, especially, via the alternative pathway and, as a result, raises the ratio of the latter to the former.  相似文献   

9.
Candida parapsilosis mitochondria contain three respiratory chains: the classical respiratory chain (CRC), a secondary parallel chain (PAR) and an “alternative” oxidative pathway (AOX). We report here the existence of similar pathways in C. albicans. To observe the capacity of each pathway to sustain yeast growth, C. albicans cells were cultured in the presence of inhibitors of these pathways. Antimycin A and KCN totally abrogated yeast growth, while rotenone did not prevent proliferation. Furthermore, rotenone promoted only partial respiratory inhibition. Lower concentrations of KCN that promote partial inhibition of respiration did not inhibit yeast growth, while partial inhibition of respiration with antimycin A did. Similarly, AOX inhibitor BHAM decreased O2 consumption slightly but completely stunted cell growth. Reactive oxygen species production and oxidized glutathione levels were enhanced in cells treated with antimycin A or BHAM, but not rotenone or KCN. These findings suggest that oxidative stress prevents C. albicans growth.  相似文献   

10.
The presence of an alternative oxidase (AOX) in Polytomella sp., a colorless relative of Chlamydomonas reinhardtii, was explored. Oxygen uptake in Polytomella sp. mitochondria was inhibited by KCN (94%) or antimycin (96%), and the remaining cyanide-resistant respiration was not blocked by the AOX inhibitors salicylhydroxamic acid (SHAM) or n-propylgallate. No stimulation of an AOX activity was found upon addition of either pyruvate, alpha-ketoglutarate, or AMP, or by treatment with DTT. An antibody raised against C. reinhardtii AOX did not recognized any polypeptide band of Polytomella sp. mitochondria in Western blots. Also, PCR experiments and Southern blot analysis failed to identify an Aox gene in this colorless alga. Finally, KCN exposure of cell cultures failed to stimulate an AOX activity. Nevertheless, KCN exposure of Polytomella sp. cells induced diminished mitochondrial respiration (20%) and apparent changes in cytochrome c oxidase affinity towards cyanide. KCN-adapted cells exhibited a significant increase of a-type cytochromes, suggesting accumulation of inactive forms of cytochrome c oxidase. Another effect of KCN exposure was the reduction of the protein/fatty acid ratio of mitochondrial membranes, which may affect the observed respiratory activity. We conclude that Polytomella lacks a plant-like AOX, and that its corresponding gene was probably lost during the divergence of this colorless genus from its close photosynthetic relatives.  相似文献   

11.
Cyanide-resistant respiration was studied in mitochondria isolated from the roots of bean plants ( Phaseolus vulgaris L. cv. Złota Saxa) grown hydroponically up to 16 days on a phosphate-sufficient (+P, control) or phosphate-deficient (−P) medium. Western blotting indicated that the alternative oxidase (AOX) was present only in its reduced (active) form, both in phosphate-sufficient and phosphate-deficient roots, but in the latter, the amount of AOX protein was greater. Addition of pyruvate to the isolation, washing and reaction media made mitochondria from +P roots cyanide-insensitive, similar to mitochondria from −P roots. The doubled activity of NAD-malic enzyme (NAD-ME) in −P compared with +P root mitochondria may suggest increased pyruvate production in −P mitochondria. Lower cytochrome c oxidase (COX) activity and no uncoupler effect on respiration indicated limited cytochrome chain activity in −P mitochondria. In −P mitochondria, the oxygen uptake decreased and the level of Q reduction increased from 60 to 80%. With no pyruvate present (AOX not fully activated), inhibition of the cytochrome pathway resulted in an increased level of the ratio of reduced ubiquinone (Qr) to total ubiquinone (Qt) (Qr/Qt) in +P mitochondria, but did not change Qr/Qt in −P mitochondria. When pyruvate was present, the kinetics for AOX were similar in mitochondria from −P and +P roots. It is suggested that AOX participation in −P respiration may provide an acclimation to phosphate deficiency. Stabilization of the ubiquinone reduction level by AOX might prevent the harmful effect of an increased formation of reactive oxygen species.  相似文献   

12.
Measurements of in Vivo Ubiquinone Reduction Levels in Plant Cells   总被引:2,自引:1,他引:1       下载免费PDF全文
A method is described for the determination of in vivo ubiquinone (UQ) reduction levels in nongreen tissues by extraction and subsequent detection of ubiquinone-10 and ubiquinol-10 with high-performance liquid chromatography. In Petunia hybrida cell suspensions UQ reduction remained at a stable level of about 60%, despite the changing conditions during the batch culture (from excess sugar to starvation) and the concomitant variations in respiration. Also, in the presence of uncoupler, which causes a large increase in respiration via both the cytochrome pathway and the alternative pathway, UQ reduction levels stayed at 60%. In mitochondria isolated from these cells, activity of the alternative pathway was only observed at UQ reduction levels higher than 80%. It is proposed that in vivo the relationship between UQ reduction and the activity of the alternative oxidase is modulated by mechanisms such as thiol modifications and accumulation of organic acids. Accordingly, pyruvate concentration in P. hybrida cells increased in the presence of uncoupler.  相似文献   

13.
The contribution of the cyanide-resistant, alternative pathway to plant mitochondrial electron transport has been studied using a modified aqueous phase on-line mass spectrometry-gas chromatography system. This technique permits direct measurement of the partitioning of electrons between the cytochrome and alternative pathways in the absence of added inhibitors. We demonstrate that in mitochondria isolated from soybean (Glycine max L. cv Ransom) cotyledons, the alternative pathway contributes significantly to oxygen uptake under state 4 conditions, when succinate is used as a substrate. However, when NADH is the substrate, addition of pyruvate, an allosteric activator of the alternative pathway, is required to achieve the same level of alternative pathway activity. Under state 3 conditions, when the reduction state of the ubiquinone pool is low, the addition of pyruvate allows the alternative pathway to compete with the cytochrome pathway for electrons from the ubiquinone pool when the cytochrome pathway is not saturated. These results provide direct experimental verification of the kinetics consequences of pyruvate addition on the partitioning of electron flow between the two respiratory pathways. This distribution of electrons between the two unsaturated pathways could not be measured using conventional oxygen electrode methods and illustrates a clear advantage of the mass spectrometry technique. These results have significant ramifications for studies of plant respiration using the oxygen electrode, particularly those studies involving intact tissues.  相似文献   

14.
The presence of an alternative oxidase (AOX) in Polytomella sp., a colorless relative of Chlamydomonas reinhardtii, was explored. Oxygen uptake in Polytomella sp. mitochondria was inhibited by KCN (94%) or antimycin (96%), and the remaining cyanide-resistant respiration was not blocked by the AOX inhibitors salicylhydroxamic acid (SHAM) or n-propylgallate. No stimulation of an AOX activity was found upon addition of either pyruvate, α-ketoglutarate, or AMP, or by treatment with DTT. An antibody raised against C. reinhardtii AOX did not recognized any polypeptide band of Polytomella sp. mitochondria in Western blots. Also, PCR experiments and Southern blot analysis failed to identify an Aox gene in this colorless alga. Finally, KCN exposure of cell cultures failed to stimulate an AOX activity. Nevertheless, KCN exposure of Polytomella sp. cells induced diminished mitochondrial respiration (20%) and apparent changes in cytochrome c oxidase affinity towards cyanide. KCN-adapted cells exhibited a significant increase of a-type cytochromes, suggesting accumulation of inactive forms of cytochrome c oxidase. Another effect of KCN exposure was the reduction of the protein/fatty acid ratio of mitochondrial membranes, which may affect the observed respiratory activity. We conclude that Polytomella lacks a plant-like AOX, and that its corresponding gene was probably lost during the divergence of this colorless genus from its close photosynthetic relatives.  相似文献   

15.
The respiratory chain of Rhodopseudomonas capsulata, strain St. Louis and of two respiration deficient mutants (M6 and M7) has been investigated by examining the redox and spectral characteristics of the cytochromes and their response to substrates and to specific respiratory inhibitors. Since the specific lesions of M6 and M7 have been localized on two different branches of the multiple oxidase system of the wild type strain, the capability for aerobic growth of these mutants can be considered as a proof of the physiological significance of both branched systems "in vivo". Using M6 and M7 mutants the response of the branched chain to respiratory inhibitors could be established. Cytochrome oxidase activity, a specific function of an high potential cytochrome b (E'0 = +413 mV) is sensitive to low concentrations of KCN (5-10(-5) M); CO is a specific inhibitor of an alternative oxidase, which is also inhibited by high concentrations of KCN (10(-3) M). Antimycin A inhibits preferentially the branch of the chain affected by low concentrations of cyanide. Redox titrations and spectral data indicate the presence in the membrane of three cytochromes of b type (E'0 = +413, +260, +47 vM) and two cytochromes of c type (E'0 = +342, +94 mV). A clear indication of the involvement in respiration of cytochrome b413, cytochrome c342 and cytochrome b47 has been obtained. Only 50% of the dithionite reducible cytochrome b can be reduced by respiratory substrates also in the presence of high concentrations of KCN or in anaerobiosis. The presence and function of quinones in the respiratory electron transport system has been clearly demonstrated. Quinones, which are reducible by NADH and succinate to about the same extent can be reoxidized through both branches of the respiratory chain, as shown by the response of their redox state to KCN. The possible site of the branching of the electron transport chain has been investigated comparing the per cent level of reduction of quinones and of cytochromes b and c as a function of KCN concentrations in membranes from wild type and M6 mutants cells. The site of the branching has been localized at the level of quinones-cytochrome b47. A tentative scheme of the respiratory chains operating in Rhodopseudomonas capsulata, St. Louis and in the two respiration deficient mutants, M6 and M7 is presented.  相似文献   

16.
The degree of involvement of cyanide-resistant alternative oxidase in the respiration of Yarrowia lipolytica mitochondria was evaluated by comparing the rate of oxygen consumption in the presence of cyanide, which shows the activity of the cyanide-resistant alternative oxidase, and the oxidation rate of cytochrome c by ferricyanide, which shows the activity of the main cytochrome pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was associated with oxygen consumption due to the functioning of the alternative oxidase. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation) completely inhibited oxygen consumption by the mitochondria. Under these conditions, the inhibition of the alternative oxidase by benzohydroxamic acid (BHA) failed to affect the reduction of ferricyanide at the level of cytochrome c. BHA did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These data indicate that the alternative system is unable to compete with the cytochrome respiratory chain for electrons. The alternative oxidase only transfers the electrons that are superfluous for the cytochrome respiratory chain.  相似文献   

17.
Regulation of alternative oxidase activity in higher plants   总被引:10,自引:0,他引:10  
Plant mitochondria contain two terminal oxidases: cytochrome oxidase and the cyanideinsensitive alternative oxidase. Electron partioning between the two pathways is regulated by the redox poise of the ubiquinone pool and the activation state of the alternative oxidase. The alternative oxidase appears to exist as a dimer which is active in the reduced, noncovalently linked form and inactive when in the oxidized, covalently linked form. Reduction of the oxidase in isolated tobacco mitochondria occurs upon oxidation of isocitrate or malate and may be mediated by matrix NAD(P)H. The activity of the reduced oxidase is governed by certain other organic acids, notably pyruvate, which appear to interact directly with the enzyme. Pyruvate alters the interaction between the alternative oxidase and ubiquinol so that the oxidase becomes active at much lower levels of ubiquinol and competes with the cytochrome pathway for electrons. These requirements for activation of the alternative oxidase constitute a sophisticated feed-forward control mechanism which determines the extent to which electrons are directed away from the energy-conserving cytochrome pathway to the non-energy conserving alternative oxidase. Such a mechanism fits well with the proposed role of the alternative oxidase as a protective enzyme which prevents over-reduction of the cytochrome chain and fermentation of accumulated pyruvate.  相似文献   

18.
Inhibitor titration curves and discrimination against 18O2 by mitochondrial respiration in three strains of green algae (Selenastrum minutum [Naeg.] Collins, and two strains of Chlamydomonas reinhardtii Dangeard) with differing respiratory capabilities were determined. Discrimination for cytochrome pathway respiration ranged from 19.89 to 20.43%. Discrimination for alternative pathway respiration by wild-type C. reinhardtii (measured in the presence of KCN) was 25.46%, while discrimination values for a cytochrome oxidase deficient mutant of C. reinhardtii ranged from 24.24 to 24.96%. In the absence of KCN, the alternative pathway was not engaged in wild-type C. reinhardtii, the only algal strain that possessed both cytochrome and alternative pathway capacities.  相似文献   

19.
成熟和褐变荔枝果实呼吸作用和脂氧合酶活性   总被引:5,自引:0,他引:5  
孙谷畴   《广西植物》1993,13(1):80-83
荔枝果实完全成熟和果皮变鮮红时,呼吸速率降低,仅相当于果皮带绿时的39.4%。此时果皮和果肉的脂氧合酶活性亦明显降低,分别相当于后者的60.2%和49.1%。成熟荔枝果实果皮呼吸作用对KCN抑制敏感。2mM KCN抑制果皮总呼吸的91.8%,而仅抑制果肉的56.9%。荔枝果皮呼吸的电了传递主要是通过细胞色素氧化酶途径,而果肉則可能一半是通过其它氧化酶途径。2mKCN和1.5mM SHAM抑制成熟果皮总呼吸97.9%,为SHAM抑制的交替途径呼吸占总呼吸5.28%。相同浓度KCN和SHAM抑制褐变果皮总呼吸79.7%,则SHAM抑制的交替途径呼吸占27.1%。果实褐变时,果成交替途径呼吸比例增高。这一变化可能促进H_2O_2积累、乙烯产生和果皮褐变深化。  相似文献   

20.
Import of the synthetic precursor of the alternative oxidase from soybean was shown to be dependent on a membrane potential and ATP. The membrane potential in soybean mitochondria may be formed either by respiration through the cytochrome pathway, or through the alternative oxidase pathway with NAD+-linked substrates. Import of the alternative oxidase precursor in the presence of succinate as respiratory substrate was inhibited by KCN. Import in the presence of malate was insensitive to KCN and SHAM added separately, but was inhibited by KCN and SHAM added together (inhibitors of the cytochrome and alternative oxidases respectively). Import of the alternative oxidase was accompanied by processing of the precursor to a single 32 kDa product in both cotyledon and root mitochondria. This product had a different mobility than the two alternative oxidase bands detected by immunological means (34 and 36 kDa), suggesting that the enzyme had been modified in situ. When the cDNA clone of the alternative oxidase was modified by a single mutation (–2 Arg changed to –2 Gly), the processing of the precursor was inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号