首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Griffonia simplicifolia II, an N-acetylglucosamine-specific legume lectin, has insecticidal activity when fed to the cowpea weevil, Callosobruchus maculatus (F.). A cDNA clone encoding G. simplicifolia II was isolated from a leaf cDNA library, sequenced, and expressed in a bacterial expression system. The recombinant protein exhibited N-acetylglucosamine-binding and insecticidal activity against cowpea weevil, indicating that glycosylation and multimeric structure are not required for these properties. These results support the hypothesis that genes of the legume lectin gene family encode proteins that function in plant defense against herbivores.  相似文献   

3.
4.
在拟南芥、水稻等草本植物中,人们对位于液泡膜上质子泵焦磷酸酶(VPase)进行了较为深入的研究,其通过水解焦磷酸释放的能量将H+从细胞质泵入液泡中,从而驱动Na+、K+等的运输,避免了细胞质中因过量的Na+、K+造成的伤害,保护了细胞的正常功能.但是木本植物如柳树中的VP1基因(SVP1)的功能尚未见报道.本研究检测了两个SVP1s同源基因在柳树L0911不同的组织(器官)中以及昼夜条件(以叶片为代表组织)下的表达模式,同时,分析了过量表达SVP1s拟南芥T3转基因株系的耐盐特性. 结果表明:SVP1.1在韧皮部中表达最高,而SVP1.2在韧皮部和新生枝条是其在根部的4~5倍;叶片中两个SVP1s在白天稳定表达,18∶00后逐渐下降,在黑暗条件下,随着暗处理时间的延长SVP1.2增幅较大;在盐胁迫条件下,SVP1s转基因拟南芥T3株系种子萌发率,叶片中与活性氧清除相关的酶,如SOD、POD和CAT等活性的诱导强度高于野生型对照;SVP1.1转基因株系叶片膜质氧化程度(MDA)低于野生型和35S:SVP1.2株系. 通过本研究显示,在拟南芥中过量表达柳树SVP1.1s提高了拟南芥的耐盐能力,揭示了木本植物中VP1基因同样具备保护细胞,使细胞耐受高盐胁迫的功能,同时也为选育优良耐盐树木品种提供了理论依据.  相似文献   

5.
The H+,K+-ATPase pumps protons or hydronium ions and is responsible for the acidification of the gastric fluid. It is made up of an α-catalytic and a β-glycosylated subunit. The relation between cation translocation and the organization of the protein in the membrane are not well understood. We describe here how pure and functionally active pig gastric H+,K+-ATPase with an apparent Stokes radius of 6.3 nm can be obtained after solubilization with the non-ionic detergent C12E8, followed by exchange of C12E8 with Tween 20 on a Superose 6 column. Mass spectroscopy indicates that the β-subunit bears an excess mass of 9 kDa attributable to glycosylation. From chemical analysis, there are 0.25 g of phospholipids and around 0.024 g of cholesterol bound per g of protein. Analytical ultracentrifugation shows one main complex, sedimenting at s20,w = 7.2 ± 0.1 S, together with minor amounts of irreversibly aggregated material. From these data, a buoyant molecular mass is calculated, corresponding to an H+,K+-ATPase α,β-protomer of 147.3 kDa. Complementary sedimentation velocity with deuterated water gives a picture of an α,β-protomer with 0.9–1.4 g/g of bound detergent and lipids and a reasonable frictional ratio of 1.5, corresponding to a Stokes radius of 7.1 nm. An α22 dimer is rejected by the data. Light scattering coupled to gel filtration confirms the monomeric state of solubilized H+,K+-ATPase. Thus, α,β H+,K+-ATPase is active at least in detergent and may plausibly function as a monomer, as has been established for other P-type ATPases, Ca2+-ATPase and Na+,K+-ATPase.  相似文献   

6.
Inorganic pyrophosphate promoted the acidification of an intracellular compartment in permeabilized procyclic trypomastigotes of Trypanosoma brucei, as measured by acridine orange uptake. The proton gradient generated by pyrophosphate was collapsed by addition of nigericin or NH(4)Cl. Pyrophosphate-driven proton translocation was stimulated by potassium ions and inhibited by KF, by the pyrophosphate analogs imidodiphosphate and aminomethylenediphosphonate (AMDP), and by the thiol reagent p-hydroxymercuribenzoate at concentrations similar to those that inhibit the plant vacuolar H(+)-pyrophosphatase (PPase). The proton translocation activity had a pH optimum around 7.5 and was partially inhibited by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (10 microM) and unaffected by bafilomycin A(1) (40 nM), concanamycin A (5 nM), sodium o-vanadate (500 microM), oligomycin (1 microM), N-ethylmaleimide (100 microM), and KNO(3). AMDP-sensitive pyrophosphate hydrolysis was detected in both procyclic and bloodstream trypomastigotes. Measurements of acridine orange uptake in permeabilized procyclic trypomastigotes in the presence of different substrates and inhibitors suggested the presence of H(+)-ATPase, H(+)-PPase, and (ADP-dependent) H(+)/Na(+) antiport activity in the same compartment. Separation of bloodstream and procyclic trypomastigote extracts on Percoll gradients yielded fractions that contained H(+)-PPase (both stages) and H(+)/Na(+) exchanger (procyclics) activities but lacked markers for mitochondria, glycosomes, and lysosomes. The organelles in these fractions were identified by electron microscopy and X-ray microanalysis as acidocalcisomes (electron-dense vacuoles). These results provide further evidence for the unique nature of acidocalcisomes in comparison with other, previously described, organelles.  相似文献   

7.
An anion-sensitive ATP-dependent H+ transport in microsomal membranes from Zea mays L. coleoptiles was partially characterized using the pH gradient-dependent decrease of unprotonated neutral red. The following criteria strongly suggest a tonoplast origin of the H+ transport observed: strict dependence on Cl; inhibition by SO42− and NO3; insensitivity against vanadate, molybdate, and azide; reversible inhibition by CaCl2 (H+/Ca2+ antiport); inhibition by diethylstilbestrol. The substrate kinetics revealed simple Michaelis Menten kinetics for ATP in the presence of 1 millimolar MgCl2 with a Km value of 0.56 millimolar (0.38 millimolar for MgATP). AMP and c-AMP did not influence H+ transport significantly. However, ADP was a potent competitive inhibitor with a Ki value of 0.18 millimolar. The same inhibition type was found for membranes prepared from primary roots by the same procedure.  相似文献   

8.
The yeast vacuolar proton-translocating ATPase (V-ATPase) is an excellent model for V-ATPases in all eukaryotic cells. Activity of the yeast V-ATPase is reversibly down-regulated by disassembly of the peripheral (V1) sector, which contains the ATP-binding sites, from the membrane (V0) sector, which contains the proton pore. A similar regulatory mechanism has been found in Manduca sexta and is believed to operate in other eukaryotes. We are interested in the mechanism of reversible disassembly and its implications for V-ATPase structure. In this review, we focus on (1) characterization of the yeast V-ATPase stalk subunits, which form the interface between V1 and V0, (2) potential mechanisms of silencing ATP hydrolytic activity in disassembled V1 sectors, and (3) the structure and function of RAVE, a recently discovered complex that regulates V-ATPase assembly.  相似文献   

9.
The yeast V-ATPase is highly similar to V-ATPases of higher organismsand has proved to be a biochemically and genetically accessible model formany aspects of V-ATPase function. Like other V-ATPases, the yeast enzymeconsists of a complex of peripheral membrane proteins, the V1sector, attached to a complex of integral membrane subunits, theV0 sector. Multiple pathways for biosynthetic assembly of theenzyme appear to be available to cells containing a full complement ofsubunits and enzyme activity may be further controlled during biosynthesis bya protease activity localized to the late Golgi apparatus. Surprisingly, theassembled V-ATPase is not a static structure. Instead, fully assembledV1V0 complexes appear to exist in a dynamic equilibriumwith inactive cytosolic V1 and membrane-bound V0complexes and this equilibrium can be rapidly shifted in response to changesin carbon source. The reversible disassembly of the yeast V-ATPase may be anovel regulatory mechanism, common to V-ATPases, that works in vivoin coordination with many other regulatory mechanisms.  相似文献   

10.
Sealed tonoplast vesicles were isolated from single cells of Chara corallina with the aid of an intracellular perfusion technique in combination with a 3/10% Percoll two step gradient centrifugation. The isolated tonoplast fraction was free from plasmalemma and chloroplasts, and showed no activities of cytochrome c oxidase, and latent IDPase, but had about 10% of the NADH-cytochrome c reductase activity. The vesicles had both ATPase and PPase activities, which could be stimulated in the presence of 10 micromolar gramicidin by 170 and 130%, respectively, demonstrating the existence of sealed vesicles. Furthermore, ATP- and PPi-dependent H+ pumping through the membrane into the vesicles was shown. Both ATPase and PPase had pH optima around pH 8.5. At the physiological pH, 7.3, they still had more than 80% of their maximal activities. Ammonium molybdate, azide, and vanadate had no or little effect on the activities of both enzymes or their associated H+ pumping activities. N,N′-dicyclohexylcarbodiimide inhibited the ATPase strongly (I50 = 20 micromolar) but the PPase only weakly. The ATPase was also more sensitive to N-ethylmaleimide than the PPase. 4,4′-Stilbenedisulfonic acid affected both enzyme activities and their associated H+ pumping activities. This is in contrast to the H+-PPase of higher plants which is 4,4′-stilbenedisulfonic acid insensitive.  相似文献   

11.
H+-translocating pyrophosphatase (H+-PPase, EC 3.6.1.1) plays an important role in acidifying vacuoles by transporting protons across membranes at the expense of pyrophosphate (PPi) hydrolysis. Vigna radiata H+-PPase (VrH+-PPase) contains 16 transmembrane helices (TMs). The hydrophobicity of TM3 is relatively lower than that of most other TMs, and the amino acids in this TM are highly conserved in plants. Furthermore, TM5 and -6, which are the core TMs involving in H+-PPase functions, are near TM3. It is thus proposed that TM3 is associated with H+-PPase activity. To address this possibility, site-directed mutagenesis was applied in this investigation to determine the role of TM3 in VrH+-PPase. Upon alanine/serine substitution, T138 and S142, whose side chains face toward the center TMs, were found to be involved in efficient proton transport. G149/S153 and G160/A164 pairs at the crucial termini of the two GxxxG-like motifs are indispensable in maintaining enzymatic activities and conformational stability. Moreover, stability in the vicinity surrounding G149 is pivotal for efficient expression. S153, M161 and A164 are critical for the K+-mediated stimulation of H+-PPase. Taken together, our results demonstrate that TM3 plays essential roles in PPi hydrolysis, proton transport, expression, and K+ stimulation of H+-PPase.  相似文献   

12.
? Plant two-pore K(+) channels (TPKs) have been shown previously to play a role in vacuolar K(+) homeostasis. TPK activity is insensitive to membrane voltage, but regulated by cytoplasmic calcium and 14-3-3 proteins. This study reports that membrane stretch and osmotic gradients also alter the activity of TPKs from Arabidopsis, rice and barley, and that this may have a physiological relevance for osmotic homeostasis. ? Mechanosensitivity was studied using patch clamp experiments and TPKs from Arabidopsis, rice and barley. In addition, the capability of TPKs to act as osmosensors was determined. By using protoplast disruption assays and intact plant survival assays, in genotypes that differed in TPK expression, the physiological relevance of TPK-based osmosensing was tested. ? TPKs from all three species showed varying degrees of mechanosensitivity. TPK activity in channels from all three species was sensitive to trans-tonoplast osmotic gradients. TPK osmosensing is likely to proceed via the detection of small perturbations in membrane tension. Intact plant and protoplast assays showed that TPK-based osmosensing is important during exposure to rapid changes in external osmolarity. ? Vacuolar TPK channels can act as intracellular osmosensors and rapidly increase channel activity during hypo-osmotic shock to release vacuolar K(+) .  相似文献   

13.
We previously demonstrated that Saccharomyces cerevisiae vnx1Δ mutant strains displayed an almost total loss of Na+ and K+/H+ antiporter activity in a vacuole-enriched fraction. However, using different in vitro transport conditions, we were able to reveal additional K+/H+ antiporter activity. By disrupting genes encoding transporters potentially involved in the vnx1 mutant strain, we determined that Vcx1p is responsible for this activity. This result was further confirmed by complementation of the vnx1Δvcx1Δ nhx1Δ triple mutant with Vcx1p and its inactivated mutant Vcx1p-H303A. Like the Ca2+/H+ antiporter activity catalyzed by Vcx1p, the K+/H+ antiporter activity was strongly inhibited by Cd2+ and to a lesser extend by Zn2+. Unlike as previously observed for NHX1 or VNX1, VCX1 overexpression only marginally improved the growth of yeast strain AXT3 in the presence of high concentrations of K+ and had no effect on hygromycin sensitivity. Subcellular localization showed that Vcx1p and Vnx1p are targeted to the vacuolar membrane, whereas Nhx1p is targeted to prevacuoles. The relative importance of Nhx1p, Vnx1p, and Vcx1p in the vacuolar accumulation of monovalent cations will be discussed.  相似文献   

14.
Potassium (K+) channels play multiple roles in higher plants, and have been characterized electrophysiologically in various subcellular membranes. The K+ channel AtKCO1 from Arabidopsis thaliana is the prototype of a new family of plant K+ channels. In a previous study the protein has been functionally characterized after heterologous expression in Baculovirus-infected insect cells. In order to obtain further information on the physiological function of AtKCO1, the gene expression pattern and subcellular localization of the protein in plants were investigated. The regulatory function of the 5' region of the AtKCO1 gene was examined in transgenic A. thaliana plants carrying beta-glucuronidase (GUS) fusion constructs. Our analysis demonstrates that the AtKCO1 promoter is active in various tissues and cell types, and the highest GUS activity could be detected in mitotically active tissues of the plant. Promoter activity was strongly dependent on the presence of a 5' leader intron. The same overall structure was identified in two genes encoding AtKCO1-like K+ channels from Solanum tuberosum (StKCO1alpha and StKCO1beta). To investigate the subcellular localization of AtKCO1, the channel protein, as well as a fusion protein of AtKCO1 with green fluorescence protein (GFP), were expressed in transgenic tobacco BY2 cells. In sucrose density gradients, both proteins co-fractionate with tonoplast markers (Nt-TIPa, vATPase). In fluorescence images from transgenic AtKCO1-GFP BY2 cells fluorescence was exclusively detected in the tonoplast. Thus AtKCO1 is the first cloned K+ channel demonstrated to be a vacuolar K+ channel.  相似文献   

15.
In plant cells, vacuolar matrix proteins are separated from the secretory proteins at the Golgi complex for transport to the vacuoles. To investigate the involvement of vacuolar-type ATPase (V-ATPase) in the vacuolar targeting of soluble proteins, we analyzed the effects of bafilomycin A1 and concanamycin A on the transport of vacuolar protein precursors in tobacco cells. Low concentrations of these inhibitors caused the missorting of several vacuolar protein precursors; sorting was more sensitive to concanamycin A than to bafilomycin A1. Secretion of soluble proteins from tobacco cells was also inhibited by bafilomycin A1 and concanamycin A. We next analyzed the subcellular localization of V-ATPase. V-ATPase was found in a wide variety of endomembrane organelles. Both ATPase activity and ATP-dependent proton-pumping activity in the Golgi-enriched fraction were more sensitive to concanamycin A than to bafilomycin A1, whereas these activities in the tonoplast fraction were almost equally sensitive to both reagents. Our observations indicate that the V-ATPase in the organelle that was recovered in the Golgi-enriched fraction is required for the transport of vacuolar protein precursors and that this V-ATPase is distinguishable from the tonoplast-associated V-ATPase.  相似文献   

16.
采用同源克隆的方法,获得盐生植物灰绿藜的液泡膜焦磷酸酶基因(VP1)全长cDNA,命名为CgVP1。生物信息学预测分析表明,CgVP1基因包含一个2 292bp的开放阅读框,编码763个氨基酸。CgVP1不仅具有与植物液泡膜焦磷酸酶共有的氨基酸序列DVGADLVGKVE,而且CgVP1与其它植物的VP1相似性达86%。跨膜结构域预测显示,CgVP1氨基酸序列含有12个跨膜螺旋区,可能定位于细胞膜系统上。RT-PCR检测表明,200mmol/L NaCl条件下萌发生长的灰绿藜,再进行800mmol/L NaCl胁迫处理24h后,CgVP1基因表达显著增强。不同浓度KCl、CaCl2、MgCl2分别处理24h,KCl和MgCl2浓度增高,CgVP1基因表达下降,CaCl2则不影响CgVP1基因表达。研究结果表明,灰绿藜CgVP1基因表达对不同种类盐胁迫响应不同,NaCl胁迫可以上调CgVP1基因表达。该研究结果有助于阐明盐胁迫对盐生植物灰绿藜CgVP1基因表达的调控作用。  相似文献   

17.
The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.  相似文献   

18.
Legionella pneumophila is an intracellular pathogen responsible for Legionnaires'' disease. This bacterium uses the Dot/Icm type IV secretion system to inject a large number of bacterial proteins into host cells to facilitate the biogenesis of a phagosome permissive for its intracellular growth. Like many highly adapted intravacuolar pathogens, L. pneumophila is able to maintain a neutral pH in the lumen of its phagosome, particularly in the early phase of infection. However, in all cases, the molecular mechanisms underlying this observation remain unknown. In this report, we describe the identification and characterization of a Legionella protein termed SidK that specifically targets host v-ATPase, the multi-subunit machinery primarily responsible for organelle acidification in eukaryotic cells. Our results indicate that after being injected into infected cells by the Dot/Icm secretion system, SidK interacts with VatA, a key component of the proton pump. Such binding leads to the inhibition of ATP hydrolysis and proton translocation. When delivered into macrophages, SidK inhibits vacuole acidification and impairs the ability of the cells to digest non-pathogenic E. coli. We also show that a domain located in the N-terminal portion of SidK is responsible for its interactions with VatA. Furthermore, expression of sidK is highly induced when bacteria begin to enter new growth cycle, correlating well with the potential temporal requirement of its activity during infection. Our results indicate that direct targeting of v-ATPase by secreted proteins constitutes a virulence strategy for L. pneumophila, a vacuolar pathogen of macrophages and amoebae.  相似文献   

19.
Trans-membrane proton pumping is responsible for a myriad of physiological processes including the generation of proton motive force that drives bioenergetics. Among the various proton pumping enzymes, vacuolar pyrophosphatases (V-PPases) form a distinct class of proton pumps, which are characterised by their ability to translocate protons across a membrane by using the potential energy released by hydrolysis of the phosphoanhydride bond of inorganic pyrophosphate. Until recently, V-PPases were known to be the purview of only plant vacuoles and plasma membranes of phototrophic bacteria. Recent discoveries of V-PPases in kinetoplastid and apicomplexan parasites, however, have expanded our view of the evolutionary reach of these enzymes. The lack of V-PPases in the vertebrate hosts of these parasites makes them potentially excellent targets for developing broad-spectrum antiparasitic agents. This review surveys the current understanding of V-PPases in parasitic protozoa with an emphasis on malaria parasites. Topological predictions suggest remarkable similarity of the parasite enzymes to their plant homologues with 15-16 membrane spanning domains and conserved sequences shown to constitute critical catalytic residues. Remarkably, malaria parasites have been shown to possess two V-PPase genes, one is an apparent orthologue of the canonical plant enzyme, whereas the other is a more distantly related paralogue with homology to a recently identified new class of K+-insensitive plant V-PPases. V-PPases appear to localise both to the plasma membrane and cytoplasmic organelles believed to be acidocalcisomes or polyphosphate bodies. Gene transfer experiments suggest that one of the malarial V-PPases is predominantly localised to the surface of intraerythrocytic parasites. We suggest a model in which V-PPase localised to the malaria parasite plasma membrane may serve as an electrogenic pump utilising pyrophosphate as an energy source, thus sparing the more precious ATP. Searching for V-PPase inhibitors could prove fruitful as a novel means of antiparasitic chemotherapy.  相似文献   

20.
Vacuolar citrate/H+ symporter of citrus juice cells   总被引:2,自引:0,他引:2  
Shimada T  Nakano R  Shulaev V  Sadka A  Blumwald E 《Planta》2006,224(2):472-480
We have isolated a cDNA, designated Citrus sinensis citrate transporter 1 CsCit1 encoding a novel vacuolar citrate/symporter. Immunoblots using antibodies raised against CsCit1 showed that the protein is localized to the juice sac cell vacuoles. The highest expression of CsCit1 and the amount of protein in the juice sac cell vacuoles coincided with the developmental stage at which the vacuolar citrate content began declining with the concomitant increase in vacuolar pH. Vacuoles from Sacharomyces cereviseae expressing CsCit1 displayed a citrate-dependent H+ efflux, and our results clearly demonstrate that CsCit1 is able to mediate the electroneutral co-transport of H+ and citrate ions, since the citrate-dependent H+ fluxes are not affected by changing the electrical potential difference across the tonoplast. The roles of CsCit1 in mediating citrate efflux from the vacuole and on citric acid homoestasis in Citrus juice sac cells are discussed. T. Shimada and R. Nakano contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号