首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
利用传统水提及碱提的方法得到茶树菇粗多糖S-ACP和J-ACP,经CTAB法和Sephadex G-150凝胶层析法对其分离纯化,分别得到S-ACP2-1和S-ACP2-2以及J-ACP2-1和J-ACP2-2两组主要组分,用扫描电子显微镜(SEM)和原子力显微镜(AFM)对多糖的形貌进行表征并测定其体外抗氧化活性和抗肿瘤活性;对多糖S-ACP2-2、J-ACP2-2进行刚果红实验测定及圆二色谱仪(CD)分析。SEM观测结果:S-ACP2-1为较粗的表面光滑的丝状,J-ACP2-1呈较细的有少量碎屑的丝状;S-ACP2-2为较大的片状,J-ACP2-2在大的片状周围有很多细小的碎屑。AFM观测结果:碱液可以使多糖分子部分断裂成小片段。刚果红实验:S-ACP2-2、J-ACP2-2在水溶液中为自由卷曲构型。CD分析:S-ACP2-2的空间构型中有序结构较少,J-ACP2-2在水溶液中为无序构型。对比4种多糖的活性,碱液作用的多糖J-ACP2-2活性高于S-ACP2-2。  相似文献   

3.
4.
5.
6.
7.
The adaptor protein Grb2 associates with phospholipase D2 (PLD2), but it is not known if this interaction is necessary for the functionality of the lipase in vivo. We demonstrate that stable short hairpin RNA (shRNA)-based silencing of Grb2, a critical signal transducer of the epidermal growth factor receptor (EGFR) and linker to the Ras/Erk pathway, resulted in the reduction of PLD2 activity in COS7 cells. Transfection of a Grb2 construct refractory to shGrb2 silencing (XGrb2(SiL)) into the Grb2-knockdown cells (COS7(shGrb2)), resulted in the nearly full rescue of PLD2 activity. However, Grb2-R86K, an SH2-deficient mutant of Grb2 that is incapable of binding to PLD2, failed to induce an enhancement of the impaired PLD2 activity in COS7(shGrb2) cells. Grb2 and PLD2 are directly associated and Grb2 is brought down with anti-myc antibodies irrespective of the presence or absence of EGFR activation. Immunofluorescence microscopy showed that co-transfected PLD2 and Grb2 re-localize to Golgi-like structures after EGF stimulation. Since this was not observed in cotransfection experiments with Grb2 and PLD2-Y169/179F, a lipase mutant that does not bind to Grb2, we inferred that Grb2 serves to hijack PLD2 to the perinuclear Golgi region through its SH2 domain. Supporting this is the finding that the primary cell line HUVEC expresses PLD2 diffusely in the cytoplasm and in the perinuclear Golgi region, where PLD2 and Grb2 colocalize. Such colocalization in primary cells increased after stimulation with EGF. These results demonstrate for the first time that the presence of Grb2 and its interaction with localized intracellular structures is essential for PLD2 activity and signaling in vivo.  相似文献   

8.
Exhaled H2O2 is considered an indicator of lung inflammatory and oxidative stress. Moreover, H2O2 may be involved in signal transduction processes. It is not fully elucidated to what extent (i) H2O2 escapes from the intravascular compartment, and (ii) pulmonary H2O2 generation and nasopharyngeal H2O2 generation contribute to exhaled H2O2. We investigated H2O2 concentrations in breath condensate from isolated buffer-perfused and ventilated rabbit lungs, and from both intubated and spontaneously breathing rabbits with a horseradish peroxidase/2',7'dichlorofluorescin assay. For the perfused lungs, a H2O2 concentration of 58 +/- 19 nM was found. Addition of H2O2 to the buffer fluid resulted in only minute appearance in the exhaled air (<0.001%). Levels of exhaled H2O2 in intubated rabbits and perfused lungs were virtually identical. Nearly ten-fold higher levels were detected in spontaneously breathing rabbits. Decreasing the inspired oxygen concentration from 21% to 1% resulted in a tendency toward decreased H2O2 exhalation in perfused lungs. In contrast, phorbol-12-myristate-13-acetate (PMA) prompted a approximately 4-fold increase in H2O2 exhalation. We conclude that the horseradish peroxidase/2',7'dichlorofluorescin assay is a feasible technique to measure H2O2 in exhaled breath condensate in rabbits. When collecting exhaled air via the tracheal tube, the signal represents pulmonary H2O2 generation with the contribution of the remaining body being negligible.  相似文献   

9.
10.
To clarify the role of O2 stores in the fluctuations in VO2 observed with changing posture, O2 intake (Veo2) and pulmonary capillary O2 transfer (Vpco2) were calculated breath by breath with a box-balloon sprometer and mass spectrometer. Changes in O2 stores of the lungs (O2L) and blood (O2b) were computed assuming metabolic rate (Vco2) constant (O2L = Veo2 - Vpco2; O2b = Vpco2 - Vco2). Measurements were made before, during, and after passive tilt to 60 degrees and on return to recumbency after 10 min erect. From supine to upright O2L increased rapidly and O2b dropped slowly, creating a net deficit in Veo2 of 130 ml in 10 min. Return to supine caused rapid loss in O2L and gain in O2b with a net Veo2 excess of 117 ml. Shifts in O2b were 2.5 times greater but opposite to shifts in O2L. Changes in O2b result from shifts in blood volume and flow more than from changes in cardiac output. Refilling of O2b, matching loss while upright, caused transient hypoxia with significant hyperpnea.  相似文献   

11.
ATP increases intracellular calcium concentration ([Ca(2+)](i)) in supraoptic nucleus (SON) neurons in hypothalamo-neurohypophyseal system explants loaded with the Ca(2+)-sensitive dye, fura 2-AM. Involvement of P2X purinergic receptors (P2XR) in this response was anticipated, because ATP stimulation of vasopressin release from hypothalamo-neurohypophyseal system explants required activation of P2XRs, and activation of P2XRs induced an increase in [Ca(2+)](i) in dissociated SON neurons. However, the ATP-induced increase in [Ca(2+)](i) persisted after removal of Ca(2+) from the perifusate ([Ca(2+)](o)). This suggested involvement of P2Y purinergic receptors (P2YR), because P2YRs induce Ca(2+) release from intracellular stores, whereas P2XRs are Ca(2+)-permeable ion channels. Depletion of [Ca(2+)](i) stores with thapsigargin (TG) prevented the ATP-induced increase in [Ca(2+)](i) in zero, but not in 2 mM [Ca(2+)](o), indicating that both Ca(2+) influx and release of intracellular Ca(2+) contribute to the ATP response. Ca(2+) influx was partially blocked by cadmium, indicating a contribution of voltage-gated Ca(2+) channels. PPADS (pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid), and iso-PPADS, P2XR antagonists, attenuated, but did not abolish, the ATP-induced increase in [Ca(2+)](i). Combined treatment with PPADS or iso-PPADS and TG prevented the response. A cocktail of P2YR agonists consisting of UTP, UDP, and 2-methylthio-ADP increased [Ca(2+)](i) (with or without tetrodotoxin) that was markedly attenuated by TG. 2-Methylthio-ADP alone induced consistent and larger increases in [Ca(2+)](i) than UTP or UDP. MRS2179, a specific P2Y(1)R antagonist, eliminated the response to ATP in zero [Ca(2+)](o). Thus, both P2XR and P2YR participate in the ATP-induced increase in [Ca(2+)](i), and the P2Y(1)R subtype is more prominent than P2Y(2)R, P2Y(4)R, or P2Y(6)R in SON.  相似文献   

12.
Two lake-dwelling species of paludicolen triclads from Lake Biwa-ko (Honshû, Japan) were studied taxonomically and karyologically. (1) Phagocata kawakatsui Okugawa, 1956, is an epigean species usually inhabiting shallow springs and spring-fed streams in Central Japan. In Lake Biwa-ko, animals were obtained from several bottom stations of the littoral area in the southern part of the northern basin (3–70 m in depth). Chromosome numbers and karyotype: 2x=24 (2m+2sm+2sm+2m+2sm+2m+2sm+2m+2m+2sm+2m+2m). The first pair of metacentric chromosomes is very large in size. (2) Bdellocephala annandalei Ijima et Kaburaki, 1916, an endemic species, is distributed widely in the deep areas of the northern basin (30 to over 100 m in depth). Chromosome numbers and karyotype: 2x=28 (2m+2sm+2sm+2sm+2sm+2m+2m+2m+2m+2m+2m+2m+2m+2m) with the first pair of metacentric chromosomes very long.  相似文献   

13.
Biotin synthase, a member of the "radical SAM" family, catalyzes the final step of the biotin biosynthetic pathway, namely, the insertion of a sulfur atom into dethiobiotin. The as-isolated enzyme contains a [2Fe-2S](2+) cluster, but the active enzyme requires an additional [4Fe-4S](2+) cluster, which is formed in the presence of Fe(NH(4))(2)(SO(4))(2) and Na(2)S in the in vitro assay. The role of the [4Fe-4S](2+) cluster is to mediate the electron transfer to SAM, while the [2Fe-2S](2+) cluster is involved in the sulfur insertion step. To investigate the selenium version of the reaction, we have depleted the enzyme of its iron and sulfur and reconstituted the resulting apoprotein with FeCl(3) and Na(2)Se to yield a [2Fe-2Se](2+) cluster. This enzyme was assayed in vitro with Na(2)Se in place of Na(2)S to enable the formation of a [4Fe-4Se](2+) cluster. Selenobiotin was produced, but the activity was lower than that of the as-isolated [2Fe-2S](2+) enzyme in the presence of Na(2)S. The [2Fe-2Se](2+) enzyme was additionally assayed with Na(2)S, to reconstitute a [4Fe-4S](2+) cluster, in case the latter was more efficient than a [4Fe-4Se](2+) cluster for the electron transfer. Indeed, the activity was improved, but in that case, a mixture of biotin and selenobiotin was produced. This was unexpected if one considers the [2Fe-2S](2+) center as the sulfur source (either as the ultimate donor or via another intermediate), unless some exchange of the chalcogenide has taken place in the cluster. This latter point was seen in the resonance Raman spectrum of the reacted enzyme which clearly indicated the presence of both the [2Fe-2Se](2+) and [2Fe-2S](2+) clusters. No exchange was observed in the absence of reaction. These observations bring supplementary proof that the [2Fe-2S](2+) cluster is implicated in the sulfur insertion step.  相似文献   

14.
Methyl CpG-binding protein 2 gene (MeCP2) mutations are implicated in Rett syndrome (RTT), one of the common causes of female mental retardation. Two MeCP2 isoforms have been reported: MeCP2_e2 (splicing of all four exons) and MeCP2_e1 (alternative splicing of exons 1, 3, and 4). Their relative expression levels vary among tissues, with MeCP2_e1 being more dominant in adult brain, whereas MeCP2_e2 is expressed more abundantly in placenta, liver, and skeletal muscle. In this study, we performed specific disruption of the MeCP2_e2-defining exon 2 using the Cre-loxP system and examined the consequences of selective loss of MeCP2_e2 function in vivo. We performed behavior evaluation, gene expression analysis, using RT-PCR and real-time quantitative PCR, and histological analysis. We demonstrate that selective deletion of MeCP2_e2 does not result in RTT-associated neurological phenotypes but confers a survival disadvantage to embryos carrying a MeCP2_e2 null allele of maternal origin. In addition, we reveal a specific requirement for MeCP2_e2 function in extraembryonic tissue, where selective loss of MeCP2_e2 results in placenta defects and up-regulation of peg-1, as determined by the parental origin of the mutant allele. Taken together, our findings suggest a novel role for MeCP2 in normal placenta development and illustrate how paternal X chromosome inactivation in extraembryonic tissues confers a survival disadvantage for carriers of a mutant maternal MeCP2_e2 allele. Moreover, our findings provide an explanation for the absence of reports on MeCP2_e2-specific exon 2 mutations in RTT. MeCP2_e2 mutations in humans may result in a phenotype that evades a diagnosis of RTT.  相似文献   

15.
The effects of hydrogen peroxide (H2O2, 1 nM-5 mM) on the tone of the rings of aorta precontracted with phenylephrine (PE) were studied in 4-5 months streptozotocin (STZ)-diabetic rats and their age-matched controls. H2O2 induced brief contraction before relaxation in endothelium-containing rings that was more pronounced in diabetic rats. Removal of the endothelium or pretreatment of rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microM) abolished H2O2-induced immediate and transient increase in tone, but preincubation with indomethacin (10 microM) had no effect on contractions induced by H2O2 in both group of animals. Pretreatment with L-NAME or indomethacin as well as absence of endothelium produced an inhibition of H2O2-induced relaxation that was more pronounced in diabetic rings. Chronically STZ-diabetes resulted in a significant increase in H2O2-induced maximum relaxation that was largely endothelium-dependent. Decreased sensitivity (pD2) of diabetic vessels to vasorelaxant action of H2O2 was normalized by superoxide dismutase (SOD, 80 U/ml). Pretreatment with SOD had no effect on H2O2-induced maximum relaxations in both group of animals but led to an increase in H2O2-induced contractions in control rats. When the rings pretreated with diethyldithiocarbamate (DETCA, 5 mM), H2O2 produced only contraction in control rats, and H2O2-induced relaxations were markedly depressed in diabetic rats. H2O2 did not affect the tone of intact or endothelium-denuded rings in the presence of catalase (2000 U/ml). Aminotriazole (AT, 10 mM) failed to affect H2O2-induced contractions or relaxations in all rings. Our observations suggest that increased production of oxygen-derived free radicals (OFRs) in diabetic state leads to a decrease in SOD activity resulting an increase in endogenous superoxide anions (O2*-), that is limited cytotoxic actions, and an increase in catalase activity resulting a decrease in both H2O2 concentrations and the production of harmful hydroxyl radical (*OH) in diabetic aorta in long-term. Present results indicate that increased vascular activity of H2O2 may be an important factor in the development of vascular disorders associated with chronically diabetes mellitus. Enhanced formation of *OH, that is a product of exogenous H2O2 and excess O2*, seems to be contribute to increased relaxations to exogenously added H2O2 in chronically diabetic vessels.  相似文献   

16.
The present study investigated the pharmacological properties of excitatory P2X receptors and P2X(2) and P2X(5) receptor subunit expression in rat-cultured thoracolumbar sympathetic neurons. In patch-clamp recordings, ATP (3-1000 microM; applied for 1 s) induced inward currents in a concentration-dependent manner. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 microM) counteracted the ATP response. In contrast to ATP, alpha,beta-meATP (30 microM; for 1 s) was virtually ineffective. Prolonged application of ATP (100 microM; 10 s) induced receptor desensitization in a significant proportion of sympathetic neurons in a manner typical for P2X(2-2) splice variant-mediated responses. Using single-cell RT-PCR, P2X(2), P2X(2-2) and P2X(5) mRNA expression was detectable in individual tyrosine hydroxylase-positive neurons; coexpression of both P2X(2) isoforms was not observed. Laser scanning microscopy revealed both P2X(2) and P2X(5) immunoreactivity in virtually every TH-positive neuron. P2X(2) immunoreactivity was largely distributed over the cell body, whereas P2X(5) immunoreactivity was most distinctly located close to the nucleus. In summary, the present study demonstrates the expression of P2X(2), P2X(2-2) and P2X(5) receptor subunits in rat thoracolumbar neurons. The functional data in conjunction with a preferential membranous localization of P2X(2)/P2X(2-2) compared with P2X(5) suggest that the excitatory P2X responses are mediated by P2X(2) and P2X(2-2) receptors. Apparently there exist two types of P2X(2) receptor-bearing sympathetic neurons: one major population expressing the unspliced isoform and another minor population expressing the P2X(2-2) splice variant.  相似文献   

17.
Ca2+ homeostasis plays a pivotal role in maintaining cell growth and function. Many heart diseases are related to the abnormalities in Ca2+ mobilization and extrusion. Ca2+-sensitive fluorescent dyes have been used successfully to estimate intracellular free Ca2+ ([Ca2+]i) level and the mechanisms of Ca2+ movements in living cells. This article is focused on the methodology involving the use of Fura-2/AM or free Fura-2 to measure agonist-induced Ca2+ mobilization as well as the mechanisms of changes in [Ca2+]i in cardiomyocytes. Methods involving Fura-2 technique for the measurement of Ca2+ extrusion from the cells and Ca2+ reuptake by sarcoplasmic reticulum (SR) are also described. The prevention of KCl-induced increase in the intracellular Ca2+ is shown by chelating the extracellular Ca2+ with EGTA or by the presence of Ca2+-channel inhibitors such as verapamil and diltiazem. The involvement of SR in the ATP-induced increase in intracellular Ca2+ is illustrated by the use of Ca2+-pump inhibitors, thapsigargin and cyclopiazonic acid as well as ryanodine which deplete the SR Ca2+ storage. The use of 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate (NCDC), an inhibitor of inositol 1,4,5-trisphosphate (IP3) production, is described for the attenuation of phosphatidic acid (PA) induced increase in Ca2+-mobilization. The increase in intracellular Ca2+ in cardiomyocytes by PA, unlike that by KCl or ATP, was observed in diabetic myocardium. Thus, it appears that the Fura-2 method for the measurement of Ca2+ homeostasis in cardiomyocytes is useful in studying the pathophysiology and pharmacology of Ca2+ movements.  相似文献   

18.
Azolla imbricata and Azolla filieuloides were studied in regard to the nitrogenase- catalyzed reactions of C2H2 reduction and H2 production, employing gas chromatography; and photosynthetic CO2 uptake as well as simultaneous determinations of C2H2 reduction, photosynthesis and respiration in a closed system. Photosynthetic CO2 uptake and respiratory C02 production were determined using an infrared gas analyzer. These studies have indicated the following 1. Nitrogenase-catalyzed C2H2 reduction is largely light dependent. About 10,000 lux were required for saturation in A imbricata. A concentration of 10% C2H2 in the gas phase is saturating for C2H2 reduction and 1% CO inhibits C2H2 reduction with concomitant H2 production. 2. A determination of C2H2 reduction activity as a function of leaf age established a develop mental gradient in both A. imbricata and A. fgliculaides. In both species activity is negligible in the apex, increases markedly in progressively older leaves, plateaus, and decreases as leaves senesce. The developmental gradient of activity is much steeper in A. imbricate than in A. filiculoieds due to differences in their gross morphology. 3. Nitrogenase-eatalyzed H2 production in A. imbricata was not detectable under Ar but was appreciable under Ar containing 15% C2H2 and 2% CO. H2 production was also determined under the latter gas phase as a function of leaf. These studies implicate the occurrence of an uptake hydrogenase. 4. The photosynthetic compensation points in air are approximately 30 ppm CO2 for A. imbricata and A. filiculoides. 5. Simultaneous measurements of photosynthesis, respiration and C2H2 reduction in A. imbricata demonstrated the immediate dependence of nitrogenase on photosynthetically captured radiation for energy but an indirect dependence on CO2 fixation.  相似文献   

19.
The aim of the present study was to investigate the relationship between agonist-induced changes in intracellular free Ca2+ ([Ca2+]i) and the refilling of intracellular Ca2+ stores in Fura 2-loaded thyroid FRTL-5 cells. Stimulating the cells with ATP induced a dose-dependent increase in ([Ca2+]i). The ATP-induced increase in [Ca2+]i was dependent on both release of sequestered intracellular Ca2+ as well as influx of extracellular Ca2+. Addition of Ni2+ prior to ATP blunted the component of the ATP-induced increase in [Ca2+]i dependent on influx of Ca2+. In cells stimulated with ATP in a Ca(2+)-free buffer, readdition of Ca2+ induced a rapid increase in [Ca2+]i; this increase was inhibited by Ni2+. In addition, the ATP-induced influx of 45Ca2+ was blocked by Ni2+. Stimulating the cells with noradrenaline (NA) also induced release of sequestered Ca2+ and an influx of extracellular Ca2+. When cells were stimulated first with NA, a subsequent addition of ATP induced a blunted increase in [Ca2+]i. If the action of NA was terminated by addition of prazosin, and ATP was then added, the increase in [Ca2+]i was restored to control levels. Addition of Ni2+ prior to prazosin inhibited the restoration of the ATP response. In the presence of extracellular Mn2+, ATP stimulated quenching of Fura 2 fluorescence. The quenching was probably due to influx of Mn2+, as it was blocked by Ni2+. The results thus suggested that stimulating release of sequestered Ca2+ in FRTL-5 cells was followed by influx of extracellular Ca2+ and rapid refilling of intracellular Ca2+ stores.  相似文献   

20.
NADPH oxidases are major sources of superoxide (O2*-) and hydrogen peroxide (H2O2) in vascular cells. Production of these reactive oxygen species (ROS) is essential for cell proliferation and differentiation, while ROS overproduction has been implicated in hypertension and atherosclerosis. It is known that the heme-containing catalytic subunits Nox1 and Nox4 are responsible for oxygen reduction in vascular smooth muscle cells from large arteries. However, the exact mechanism of ROS production by NADPH oxidases is not completely understood. We hypothesized that Nox1 and Nox4 play distinct roles in basal and angiotensin II (AngII)-stimulated production of O2*- and H2O2. Nox1 and Nox4 expression in rat aortic smooth muscle cells (RASMCs) was selectively reduced by treatment with siNox4 or antisense Nox1 adenovirus. Production of O2*- and H2O2 in intact RASMCs was analyzed by dihydroethidium and Amplex Red assay. Activity of NADPH oxidases was measured by NADPH-dependent O2*- and H2O2 production using electron spin resonance (ESR) and 1-hydroxy-3-carboxypyrrolidine (CPH) in the membrane fraction in the absence of cytosolic superoxide dismutase. It was found that production of O2*- by quiescent RASMC NADPH oxidases was five times less than H2O2 production. Stimulation of cells with AngII led to a 2-fold increase of O2*- production by NADPH oxidases, with a small 15 to 30% increase in H2O2 formation. Depletion of Nox4 in RASMCs led to diminished basal H2O2 production, but did not affect O2*- or H2O2 production stimulated by AngII. In contrast, depletion of Nox1 in RASMCs inhibited production of O2*- and AngII-stimulated H2O2 in the membrane fraction and intact cells. Our data suggest that Nox4 produces mainly H2O2, while Nox1 generates mostly O2*- that is later converted to H2O2. Therefore, Nox4 is responsible for basal H2O2 production, while O2*- production in nonstimulated and AngII-stimulated cells depends on Nox1. The difference in the products generated by Nox1 and Nox4 may help to explain the distinct roles of these NADPH oxidases in cell signaling. These findings also provide important insight into the origin of H2O2 in vascular cells, and may partially account for the limited pharmacological effect of antioxidant treatments with O2*- scavengers that do not affect H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号