首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design and synthesis of LuxS enzyme inhibitors otherwise known as S-ribosylhomocysteine analogues, to target quorum sensing in bacteria, has been considerably developed within the last decade. This review presents which molecules have been synthesized to target LuxS enzyme in other words inhibitors of S-ribosylhomocysteinase. It reports their tested biological activity as LuxS inhibitors when available. A systematic overview has been conducted by searching PubMed, Medline, and The Cochrane Library and data extraction of all synthesized S-ribosylhomocysteine analogues has been collected. This mini-review shows limited data to date on this area and should continue to be studied.  相似文献   

2.
The thiol S-methyltransferase from rat liver has been solubilized and prepared in homogeneous form. The enzyme exists in a monomer of Mr 28,000 although enzyme activity is highly unstable with a half-life of 4 days under the best conditions of storage. The reaction requires S-adenosylmethionine as methyl donor but, as is the case with many enzymes active in detoxification, a large variety of lipophilic compounds can serve as acceptors. Acceptor activity is limited to thiols. The naturally occurring hydrophilic thiols, glutathione and cysteine, act neither as substrates nor as inhibitors. The course of the reaction is biphasic with an initial rapid formation of product that is followed by a slower linear rate. The suggestion is offered that this behavior reflects the slow dissociation of an enzyme-product complex composed of enzyme and S-adenosyl-homocysteine.  相似文献   

3.
Glutathione S-aralkyltransferase   总被引:5,自引:5,他引:0       下载免费PDF全文
1. The name `glutathione S-aralkyltransferase' is proposed for the enzyme catalysing the reaction of benzyl chloride with GSH. 2. Results from heat-inactivation studies, ammonium sulphate-fractionation and acid-precipitation experiments, and studies of the distribution of activities in rat liver, in rat kidney and in the livers of other animals indicate that glutathione S-aralkyltransferase differs from glutathione S-alkyltransferase, S-aryltransferase, S-epoxidetransferase and an S-alkenetransferase. 3. The distribution of these enzymes in the livers of the animal species examined was different. 4. Glutathione S-alkyltransferase, S-aralkyltransferase and the S-alkenetransferase that are present in rat liver supernatant were inhibited by GSSG, and the nature of the inhibition varied in each case. 5. 3,5-Di-tert.-butyl-4-hydroxybenzyl acetate reacts spontaneously with GSH, but the rat liver-supernatant-catalysed reaction of GSH with this and other aralkyl esters was weak. 6. A probable function of the glutathione S-transferases is the protection of cellular constituents from strong electrophilic agents.  相似文献   

4.
S-nitrosoglutathione reductase (GSNOR), also known as S-(hydroxymethyl)glutathione (HMGSH) dehydrogenase, belongs to the large alcohol dehydrogenase superfamily, namely to the class III ADHs. GSNOR catalyses the oxidation of HMGSH to S-formylglutathione using a catalytic zinc and NAD+ as a coenzyme. The enzyme also catalyses the NADH-dependent reduction of S-nitrosoglutathione (GSNO). In plants, GSNO has been suggested to serve as a nitric oxide (NO) reservoir locally or possibly as NO donor in distant cells and tissues. NO and NO-related molecules such as S-nitrosothiols (S-NOs) play a central role in the regulation of normal plant physiological processes and host defence. The enzyme thus participates in the cellular homeostasis of S-NOs and in the metabolism of reactive nitrogen species. Although GSNOR has recently been characterized from several organisms, this study represents the first detailed biochemical and structural characterization of a plant GSNOR, that from tomato (Solanum lycopersicum). SlGSNOR gene expression is higher in roots and stems compared to leaves of young plants. It is highly expressed in the pistil and stamens and in fruits during ripening. The enzyme is a dimer and preferentially catalyses reduction of GSNO while glutathione and S-methylglutathione behave as non-competitive inhibitors. Using NAD+, the enzyme oxidizes HMGSH and other alcohols such as cinnamylalcohol, geraniol and ω-hydroxyfatty acids. The crystal structures of the apoenzyme, of the enzyme in complex with NAD+ and in complex with NADH, solved up to 1.9 Å resolution, represent the first structures of a plant GSNOR. They confirm that the binding of the coenzyme is associated with the active site zinc movement and changes in its coordination. In comparison to the well characterized human GSNOR, plant GSNORs exhibit a difference in the composition of the anion-binding pocket, which negatively influences the affinity for the carboxyl group of ω-hydroxyfatty acids.  相似文献   

5.
A previously uncharacterized glutathione S-transferase isoenzyme which is absent from normal adult rat livers has been isolated fetal rat livers. The enzyme was purified using a combination of affinity chromatography, CM-cellulose column chromatography and chromatofocusing. It is composed of two non-identical subunits, namely, subunit Yc (Mr 28 000) and a subunit (Mr 25 500) recently reported by us to be uniquely present in fetal rat livers and which we now refer to as subunit ‘Yfetus’. The enzyme which we term glutathione S-transferase YcYfetus has an isoelectric point of approx. 8.65 and has glutathione S-transferase activity towards a number of substrates. The most significant property of the fetal isozyme is its high glutathione peroxidase activity towards the model substrate cumene hydroperoxide. We suggest that this isozyme serves a specific function in protecting fetuses against the possible teratogenic effects of organic peroxides.  相似文献   

6.
A sensitive assay has been devised for glutathione-S-arene oxidase transferase using as substrates naphthalene-1,2-oxide or styrene oxide along with [35S]glutathione. Activity of the order of 2–3 nmoles of conjugate formed during a 5-min incubation can be detected. This yields about 2000 cpm above a blank of about 1500 cpm. Transferase activity was found mainly in liver and kidney but was also present in most other tissues of rats. Glutathione-S-arene oxide transferase has been purified 70- to 80-fold from sheep liver 100,000 g supernatants using the conventional procedures. After electrofocusing, enzyme activity separated into two major peaks and two or three minor peaks, ranging in isoelectric point from pH 6.5 to 7.5. Activities assayed with naphthalene-1,2-oxide or styrene oxide as substrates were found to almost parallel each other in all the peaks.The sheep liver transferase required neither metal ions nor cofactors such as FAD, pyridoxal-phosphate and thiamine pyrophosphate. The molecular weight of the transferase has been estimated to be about 40,000.Km values for glutathione, naphthalene-1,2-oxide, and styrene oxide are 1.6, 0.11, and 0.13 mm, respectively. Km values for glutathione decreased with increasing pH, whereas the Km values for naphthalene-1,2-oxide were independent of pH in the range of 6.5–8.  相似文献   

7.
Rat liver supernatants were shown to contain an enzymatic activity catalyzing in both forward and reverse directions the reversible sulfitolysis of glutathione disulfide. The enzymatic sulfitolysis has maximal activity at pH 7. S-Sulfoglutathione, which is a product of the sulfitolysis, was isolated by passage through an ion-exchange column. Three different assays were applied to determine S-sulfoglutathione, viz., methods based on the ninhydrin reaction, the formation of a thiazoline derivative in strong acid, and the use of radioactively labeled glutathione. The reversal of the sulfitolysis, i.e., the reaction of S-sulfoglutathione with glutathione, was studied directly by determination of sulfite with radioactive N-ethylmaleimide, or indirectly by coupling to the NADPH- and glutathione reductase-linked reduction of glutathione disulfide.Chromatographic analysis of rat liver supernatants demonstrated that all fractions catalyzing the reversible sulfitolysis did also catalyze the previously studied thiol-disulfide interchange of glutathione and the mixed disulfide of cysteine and glutathione.The reduction of thiosulfate esters, such as S-sulfocysteine and trimethylammonium-ethylthiosulfate, with glutathione was also catalyzed by the enzyme active in the sulfitolysis, which indicates an important biosynthetic role of the enzyme in microorganisms synthesizing cysteine via S-sulfocysteine. The enzyme is also capable of participating in the formation of the naturally occurring S-sulfoglutathione.  相似文献   

8.
Glyoxalase II [S-(2-hydroxyacyl)glutathione hydrolase], one of the components of the glyoxalase system, catalyzes the hydrolysis of S-lactoylglutathione to glutathione and d-lactic acid. The enzyme was partially purified from the yeast Hansenula mrakii IFO 0895 by successive column chromatographies and polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 22,000 daltons by gel-filtration of Sephadex G-150 column chromatography and 24,000 daltons by SDS-polyacrylamide gel electrophoresis. The enzyme was specific to S-lactoyglutathione and S-acetylglutathione. The activity of the enzyme was strongly inhibited by Cu2+, p-chloromercuribenzoate and HgCl2. The enzyme activity was also inhibited by hemimercaptal, a non-enzymatic condensation product between glutathione and methylglyoxal.  相似文献   

9.
Rat basophil leukemia cell homogenates effectively catalyze the conversion of leukotriene A4 to a mixture of leukotrienes C4 and D4 in the presence of glutathione. These homogenates also catalyze the formation of adducts of halogenated nitrobenzene with glutathione, as determined spectrophotometrically. While all the classical glutathione S-transferase activity resides in the soluble fraction of the homogenates, the thiol ether leukotriene-generating activity is found in the particulate fraction. This “leukotriene C synthetase” activity has been solubilized from a crude high-speed particulate fraction by means of the nonionic detergent, Triton X-100. The solubilized enzyme is incapable of converting 2,4-dinitrochlorobenzene to a colored product in the presence of glutathione. Nor will it react with 3,4-dichloronitrobenzene. On the other hand, under optimal conditions, this enzyme preparation is capable of generating about 0.1 nmol leukotriene C mg protein?1 min?1 in a reaction which continues in linear fashion for at least 10 min. This dissociation in substrate specificity, as well as differences in the inhibition profile, distinguish the enzyme activity in the particulate fraction from rat basophil leukemia cell homogenates from the microsomal glutathione S-transferase which has been described in rat liver homogenates, suggesting that this “leukotriene C synthetase” is a new and unique enzyme.  相似文献   

10.
S-Adenosylhomocysteine (SAH), a potent inhibitor of methyltransferases, and several thioethers structurally related to SAH, have been tested as potential inhibitors of tRNA (guanine-7)-methyltransferase from Salmonella typhimurium. The tested compounds are l-, d-, dl-S-adenosylhomocysteine, S-adenosylcysteine, methylthioadenosine, butylthioadenosine, thioethanoladenosine, isobutylthioadenosine, S-inosylhomocysteine, and methylthioinosine. Among them the highest inhibitory activity has been shown by SAH (Ki = 8 μM), whereas butylthioadenosine, isobutylthioadenosine, and thioethanoladenosine are almost inactive as inhibitors. The other compounds inhibit the enzyme with Ki values ranging between 400 and 800 μm. From these data it is possible to evaluate the importance of the -NH2 and -COOH groups of the substrate in the binding to the enzyme molecule, as well as other features such as the chirality at the α-carbon atom and the length of the hydrocarbon chain connecting the -NH2 and -COOH groups to the aromatic ring of adenosine. The aminic group of the adenosine is also critical, because S-inosylhornocysteine and methylthioinosine are poorer inhibitors in comparison with SAH and methylthioadenosine.  相似文献   

11.
An enzyme catalysing the conjugation of epoxides with glutathione   总被引:5,自引:3,他引:2       下载免费PDF全文
1. Liver supernatant preparations from rats and ferrets catalyse the conjugation of some epoxides with glutathione. The enzyme involved might be called `glutathione S-epoxidetransferase', as it is different from glutathione S-aryltransferase, the enzyme catalysing the conjugation of 1,2-dichloro-4-nitrobenzene, 4-nitro-pyridine N-oxide and other cyclic compounds with glutathione and from the enzyme catalysing the conjugation of iodomethane and glutathione. 2. The enzyme does not catalyse the reaction with cysteine. It is not inactivated by dialysis but is unstable at pH 5·0. 3. The role of the enzyme in metabolism of foreign compounds is discussed.  相似文献   

12.
In order to gain insight into the phylogeny and physiological significance of organic-anion-binding proteins in the liver, the hepatic glutathione S-transferases of rat and a typical elasmobranch, the thorny-back shark (Platyrhinoides triseriata), were compared with respect to both glutathione S-transferase activites and organic-anion-binding properties. On gel filtration (Sephadex G-75, Superfine grade) of rat cytosol, the elution volumes of enzyme activities with 1-chloro-2,4-dinitrobenzene and p-nitrobenzyl chloride as substrates were identical (rat Y-fractions; Mr 45000). In contrast, two peaks of enzyme activity for 1-chloro-2,4-dinitrobenzene with elution volumes corresponding to Mr 52000 (PLAT Y1) and Mr 45000 (PLAT Y2) were detected on gel filtration of P. triseriata cytosol. Only fraction PLAT Y2 had enzyme activity with p-nitrobenzyl chloride. Enzyme kinetic studies showed that rat Y-fraction had higher affinities for both 1-chloro-2,4-dinitrobenzene and glutathione than PLAT Y1- and PLAT Y2-fractions. The two forms of P. triseriata glutathione S-transferases differed greatly in affinity for glutathione. At a glutathione concentration that we found to be physiological in P. triseriata, PLAT Y2 accounted for approx. 70% of the total glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene. Binding studies revealed that PLAT Y1 and PLAT Y2 fractions had much lower affinities for sulphobromophthalein and bilirubin than rat Y-fraction. In contrast, binding affinities of PLAT Y1 and PLAT Y2 for Rose Bengal and 1-anilino-8-naphthalenesulphonate were comparable with that of rat Y-fraction. Inhibitory kinetics suggested that sulphobromophthalein and Rose Bengal were non-competitive inhibitors of glutathione S-transferase activities when 1-chloro-2,4-dinitrobenzene was used as substrate for both PLAT Y1 and PLAT Y2. The major glutathione S-transferase from the PLAT Y2 fraction was purified 81-fold by sequential chromatography on Sephadex G-75, DEAE-Sephadex and hydroxyapatite, and consisted of two identical subunits with pI7.7. The highly enriched Y2-fraction retained high affinity binding of Rose Bengal and 1-anilino-8-naphthalenesulphonate.  相似文献   

13.
The possible role of glutathione-dependent enzymes in the liver and kidney of the freshwater fish Channa punctatus has been studied after exposure to arsenic trioxide for different durations. Activities of glutathione-S-transferases, glutathione peroxidase, glutathione reductase, and catalase decreased in the liver and kidney as a result of the initial increase in arsenic concentration in the liver and kidney. However, during longer exposures, a decline in arsenic concentration corresponded with improved enzyme activity. Because arsenic manifests its toxicity by inducing oxidative stress, the antioxidant enzymes, especially the glutathione-dependent enzymes, play a protective role in arsenic toxicity.  相似文献   

14.
《Biochemical education》1999,27(1):45-47
An advanced biochemistry laboratory has been designed to focus on a detoxifying enzyme, glutathione-S-transferase, which is involved in the metabolism of polycyclic aromatic hydrocarbons (PAHs), pesticides, herbicides, and other electrophilic xenobiotic compounds. The enzyme is known to catalyze conjugation of glutathione to xenobiotics, which makes them water-soluble so that they can be easily discarded through further metabolism and excretion. About two-thirds of the laboratory course incorporates nine advanced biochemical techniques, all focused to analyze various chemical characteristics of the glutathione-S-transferase. The remaining third of the semester time students work on a project that involves application of all the newly acquired techniques to solve a biochemical problem that encompasses the same detoxifying enzyme.  相似文献   

15.
Hepatic glutathione S-transferase activities were determined with the substrates 1,2-dichloro-4-nitrobenzene and 1-chloro-2,4-dinitrobenzene. Sexual differentiation of glutathione S-transferase activities is not evident during the prepubertal period, but glutathione conjugation with 1,2-dichloro-4-nitrobenzene is 2–3-fold greater in adult males than in females. Glutathione conjugation with 1-chloro-2,4-dinitrobenzene is slightly higher in adult males than adult females. No change in activity was observed after postpubertal gonadectomy of males or females. Neonatal castration of males results in a significant decrease in glutathione conjugation with 1,2-dichloro-4-nitrobenzene. Hypophysectomy, or hypophysectomy followed by gonadectomy did result in significantly higher glutathione S-transferase activities in both sexes. These increases can be reversed by implanting an adult male or female pituitary or four prepubertal pituitaries under the kidney capsule. Postpubertal sexual differentiation of glutathione S-transferase activities is neither dependent on pituitary sexual differentiation nor pituitary maturation. Prolactin concentrations are inversely related to glutathione S-transferase activities in hypophysectomized rats with or without ectopic pituitaries. Somatotropin exogenously administered to hypophysectomized rats results in decreased glutathione S-transferase activities, whereas prolactin has no effect. Adult male rats treated neonatally with monosodium l-glutamate to induce arcuate nucleus lesions of the hypothalamus have decreased glutathione S-transferase activities towards 1,2-dichloro-4-nitrobenzene and decreased somatotropin concentrations. Our experiments suggests that sexual differentiation of hepatic glutathione S-transferase is a result of a hypothalamic inhibiting factor in the male (absent in the female). This postpubertally expressed inhibiting factor acts on the pituitary to prevent secretion of a pituitary inhibiting factor (autonomously secreted by the female), resulting in higher glutathione S-transferase activities in the adult male than the adult female.  相似文献   

16.
The unusual glutathione S-transferase GSTO1 reduces, rather than conjugates, endo- and xenobiotics, and its role in diverse cellular processes has been proposed. GSTO1 has been assayed spectrophotometrically by measuring the disappearance of its substrate, S-(4-nitrophenacyl)glutathione (4-NPG), in the presence of 2-mercaptoethanol that regenerates GSTO1 from its mixed disulfide. To assay GSTO1 in rat liver cytosol, we have developed a high-performance liquid chromatography (HPLC)-based procedure with two main advantages: (i) it measures the formation of the 4-NPG reduction product 4-nitroacetophenone, thereby offering improved sensitivity and accuracy, and (ii) it can use glutathione, the physiological reductant of GSTO1, which is impossible to do with the spectrophotometric procedure. Using the new assay, we show that (i) the GSTO1-catalyzed reduction of 4-NPG in rat liver cytosol also yields 1-(4-nitrophenyl)ethanol, whose formation from 4-nitroacetophenone requires NAD(P)H; (ii) the two assays measure comparable activities with 2-mercaptoethanol or tris(2-carboxyethyl)phosphine used as reductant; (iii) the cytosolic reduction of 4-NPG is inhibited by GSTO1 inhibitors (KT53, 5-chloromethylfluorescein diacetate, and zinc), although the inhibitory effect is strikingly influenced by the type of reductant in the assay and by the sequence of reductant and inhibitor addition. Characterization of GSTO1 inhibitors with the improved assay provides better understanding of interaction of these chemicals with the enzyme.  相似文献   

17.
A procedure for the rapid identification of glutathione S-transferase isozymes from rat liver in polyacrylamide gels is described. The isozymes are separated by electrofocusing and then identified by bathing the gels in a solution containing substrates and scanning the gels at the appropriate wavelength for the appearance of product. Increase in absorbance as a function of time delineates areas containing enzyme from artifacts within the gel. This technique should be useful for the identification of isozymes of glutathione S-transferase in other tissues and also other species. Also, the technique provides for rapid confirmation of homogeneity of the isozymes of glutathione S-transferase.  相似文献   

18.
Rat kidney cortical slices, during incubation in vitro, lose previously accumulated radiosulfur when exposed to conditions (e.g. addition to the medium of metabolic inhibitors) which normally depress the uptake of S35. The extent of this loss is not affected significantly by the presence of phlorhizin, an agent which enhances markedly radiosulfate accumulation. On the other hand, when tissues are chilled to 1°C., loss is slight or negligible even in the presence of metabolic inhibitors. These data, and observations on the effect of pre-incubation of kidney slices in S35-free media before the addition of radiosulfate, have been interpreted as evidence that S35 accumulation in vitro may be resolved into at least two processes, namely (a) entrance of the isotope-labelled anion into the cells, by diffusion and/or active transport, and (b) complexing of S35 (in ionic or other form) with an intracellular component. The postulated complex is stabilized, perhaps through inactivation of a specific enzyme, by chilling the tissue to 1°C. Possible relationships are discussed among the observations noted above, sulfur metabolism in general, and aspects of the known in vivo transport mechanism for sulfate ion; i.e., renal tubular reabsorption.  相似文献   

19.
The synthesis of some novel azasteroids and thiasteroids based on a pregnan nucleus with a Δ7 double bond in two to five steps from the key aldehyde (3S,20S)-20-formylpregn-7-en-3-yl acetate has been disclosed herein. These compounds were evaluated as potential inhibitors of the enzyme Δ24-sterol methyltransferase (24-SMT), which is a key enzyme in the biosynthesis of ergosterol, and for their effects on the growth of the yeast Yarrowia lipolytica. Most of the side chain modified analogues were recognized as 24-SMT inhibitors, and in particular the 23-azasteroids 5f5i and the 24-azasteroid 11 showed potent antifungal activity. The target enzyme could be identified unambiguously using an improved whole-cell assay combined with GC–MS analysis of the sterol pattern resulting upon incubation with the inhibitors.  相似文献   

20.
A common affinity tag used to express and purify fusion proteins is glutathione S-transferase. However, many researchers have reported difficulty eluting GST-tagged proteins from the affinity matrix. This report demonstrates that the problem likely is due to the propensity of glutathione S-transferase to dimerize combined with a propensity of the tagged protein to oligomerize, which results in formation of large oligomers of fusion protein that are chelated by the affinity matrix. The solution to the problem is to use S-butylglutathione instead of glutathione to elute, as S-butylglutathione binds more tightly to glutathione S-transferase and overcomes the chelate effect. Moreover, in contrast to glutathione, S-butylglutathione has no reducing capability that might inactivate a tagged protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号