首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzyme present in cell-free extracts of B. melaninogenicus grown with vitamin K is described which catalyzes the synthesis of 3-ketodihydrosphingosine from palmitoyl CoA and l-serine. Activity of the 3-ketodihydrosphingosine synthetase was measured as a function of time, palmitoyl CoA concentration, and serine concentration. The Bacteroides synthetase differs from corresponding enzymes from brain microsomes and from yeast in that it is present in the 100,000g supernatant of sonicated cells and is not associated with any particulate fraction.Extracts prepared from cells depleted of vitamin K showed only slight 3-ketodihydrosphingosine synthetase activity. Neither vitamin K1, menadione, nor pyridoxal phosphate were effective in enhancing the activity in cell-free extracts of vitamin K-depleted B. melaninogenicus. However, induction of the enzyme activity in intact cells was demonstrated by the addition of vitamin K to a vitamin K-depleted culture. Synthetase activity was found to be increased 15 min following the addition of the vitamin, reached a maximum at 75 min, and thereafter remained constant. Both puromycin and rifampcin inhibit induction of the enzyme by vitamin K1 suggesting that vitamin K induces de novo synthesis of the synthetase.  相似文献   

2.
The protein carboxylating system derived from vitamin K-deficient rat liver microsomes functions in detergent solution if vitamin K1, NADH, dithiothreitol, CO2 and O2 are added. The requirements for added NADH, dithiothreitol and O2 are all eliminated by the use of vitamin K1 hydroquinone in place of quinone. The use of the hydroquinone gives a more rapid reaction and a higher yield than does the quinone plus reducing system. The reaction proceeding from either the vitamin K1 quinone or hydroquinone is blocked by the spin-trapping agent, 5,5-dimethyl-l-pyrroline-N-oxide, suggesting that the active form of vitamin K is the semiquinone.  相似文献   

3.
Respiratory inhibition by piericidin A was overcome by addition of vitamin K3 to the inhibited respiratory chain in mammalian mitochondria but not in insect mitochondria.

Antagonistic effect of vitamin K3 on the inhibition of piericidin A was apparently found in respiration, blood pressure and heart rate in rat in vivo. Furthermore, toxicity of piericidin A to mouse and rat decreased when piericidin A was administered as the mixture of vitamin K3 in intraperitoneal route.

No antagonistic effect of vitamin K3 was observed on the inhibition of piericidin A in TTC reaction of american cockroach nerve cord, femorals and digestive organs. Toxicity of piericidin A to some insects were not affected by vitamin K3.  相似文献   

4.
Vitamin B12-dependent methionine synthetase (N5-methyItetrahydrofolate-homocysteine Bi2-methyltransferase; EC 2.1.1.13) was partially purified from two different types of photo-synthetic bacteria, Chromatium D and Rhodospirillum rubrum.

Chromatium D, which does not produce vitamin B12, possessed apomethionine synthetase when grown in the absence of the vitamin. Partially purified apoenzyme was converted to holoenzyme efficiently with CH3B12 or OHB12. Holo-methionine synthetase was purified 244 fold with 56.4 % recovery from Chromatium D cells grown with vitamin B12 added. The partially purified enzyme required reductants but was only partially dependent on S-adenosylmethionine.

On the other hand, Rsp. rubrum methionine synthetase which was always present as holoenzyme, in contrast with that of Chromatium D, was purified 40 fold with 2.8% recovery. The obtained preparation required S-adenosylmethionine and reductants for the enzyme activity. The optimal pH of Chromatium D enzyme and of Rsp. rubrum enzyme was in the range of 7.5~7.8 and 6.5~6.75, respectively.  相似文献   

5.
1. Acetyl-CoA acts as a positive allosteric effector in the formation of active pyruvate carboxylase from its apoenzyme, ATP and (+)-biotin which is catalysed by holoenzyme synthetase; this effect is counteracted by l-aspartate. 2. The Hill coefficients (apparent n values) were approximately 2 for acetyl-CoA and 4 for l-aspartate; the n value for each effector remained constant when the concentration of the other effector was varied. 3. Active pyruvate carboxylase was formed also when the apoenzyme was incubated with holoenzyme synthetase and synthetic biotinyl-5'-AMP; acetyl-CoA and l-aspartate affected this process as they did the overall reaction from (+)-biotin and ATP. 4. When hydroxylamine replaced the apoenzyme, holoenzyme synthetase catalysed the formation of biotinylhydroxamate from (+)-biotin and ATP. This reaction was not affected by the allosteric effectors. 5. The apoenzyme was protected against thermal denaturation by acetyl-CoA and, to a lesser degree, by l-aspartate. The holoenzyme synthetase was not markedly protected by these effectors. 6. It is concluded that the allosteric effectors act on the apoenzyme and not the synthetase.  相似文献   

6.
In vitamin B6 deficiency there is an increase in the activity of the pyridoxal phosphate dependent enzyme ornithine decarboxylase. In the rat liver: the apoenzyme and holoenzyme activity increased 1.6 and 4 fold respectively. Concomitantly, putrescine and spermidine concentrations were halved. The lack of correspondence between product concentration and enzymic activity suggests a control mechanism other than ornithine decarboxylase activity.  相似文献   

7.
The estrogen synthetase present in human placental microsomes appears to be dependent on the cooperative interaction of the reduced cofactors NADPH and NADH for optimal activity. Using steady-state concentrations of either cofactor, it was found that while the estrogen synthetase activity followed hyperbolic saturation kinetics with NADPH (Kmapp = 14 μM), the enzyme followed sigmoidal saturation kinetics when the cofactor was NADH, with the half-maximum velocity attained at a cofactor concentration of 1.1 mm. The maximum velocity obtained with NADPH as the cofactor was greater than with corresponding concentrations of NADH. Estrogen synthetase activity in the presence of NADH was not due to NADPH contamination. NADH, in the presence of small concentrations of NADPH (0.5 to 5 μm), stimulated significantly the rate of estrogen formation from androstenedione by placental microsomes and, in addition, the enzyme saturation kinetics changed from sigmoidal to hyperbolic, thus mimicking the effect of NADPH. Estrogen synthetase activity, measured in the presence of 1 mm NADH, was stimulated in a dose-dependent manner by NADPH (Kmapp = 0.4 μM NADPH) and, when the enzyme was measured in the presence of 5 μm NADPH, the activity was stimulated in a dose-dependent manner by NADH (Kmapp = 45 μM NADH). Estrogen synthetase activity measured in the presence of NADH, without and with NADPH (1 μm) remained linear both with time of incubation for approximately 15 min and with microsomal protein concentration up to 3 mg/ml. The apparent Km of estrogen synthetase for androstenedione, when measured in the presence of NADH, was 1 μm. The synergistic interaction between NADH and NADPH in stimulating placental estrogen synthetase activity observed in vitro may, conceivably, take place in vivo in the intact placenta.  相似文献   

8.
The effects of vitamin K on the morphology and the growth of mouse neuroblastoma (P2), mouse melanoma (B-16) and rat glioma (C-6) cells in culture were studied. Vitamin K3 inhibited the growth (due to cell death and partial or complete inhibition of cell division) of all three cell types without causing any morphological differentiation. Vitamin K3 was more effective than vitamin K1. Neuroblastoma cells were more sensitive to vitamin K3 than were melanoma or glioma cells. Glioma cells did not grow in hormone-supplemented serum-free medium; however, both neuroblastoma and melanoma cells grew to a level 70–80% of that found in serum-supplemented medium. Neuroblastoma cells and melanoma cells cultured in serum-free medium exhibited a 2–3 fold higher sensitivity to vitamin K3 than those cultured in serum-supplemented medium. This suggests that serum factors attenuate the growth inhibitory effect of vitamin K3 on tumor cells in culture, probably by reducing the availability of this vitamin to the cells. Neuroblastoma cells were more sensitive to vitamin K3 than were melanoma cells even when they were treated in serum-free medium. The fact that micromolar concentrations of vitamin K3 inhibit the growth of tumor cells in culture suggests that this vitamin may be a potentially useful anticancer agent.  相似文献   

9.
Two protein type factors which stimulate the reduction of vitamin K1-2,3-epoxide to vitamin K1 have been separated from the 105,000g-supernatant fraction (cytosol) of rat liver homogenates. One of these factors is rather labile. However the other factor was sufficiently stable to permit 900-fold purification following sequential column chromatography on DEAE-Sephacel, QAE-Sephadex, CM-Sephadex, and Sephacryl S-200. Four milligrams of this purified material were obtained in 32% yield from 11 g of soluble cytosolic protein. This factor appeared to be homogeneous as determined by gel electrophoresis and has a molecular weight of about 38,000 as determined by gel filtration. The final preparation had no vitamin K epoxide reductase activity in the presence or absence of either NADH or dithiothreitol. The results of kinetic studies using this factor were consistent with its acting as a nonessential activator of the microsome catalyzed reduction of vitamin K1-2,3-epoxide. The factor did not cause a large change in the apparent Km (2.2–2.5 μm) of vitamin K epoxide reductase, but the apparent Vmax was increased about fourfold.  相似文献   

10.
1. Methods are described for the assay and purification of pyruvate apocarboxylase and pyruvate holocarboxylase synthetase from biotin-deficient Bacillus stearothermophilus. 2. Pyruvate apocarboxylase was obtained 200-fold purified and in a nearly homogeneous state; it closely resembled the holoenzyme of the thermophile in fractionation properties, electrophoretic mobility and molecular weight (estimated to be 350000 by gel filtration). 3. Pyruvate holocarboxylase synthetase, purified more than 50-fold, was estimated to have a molecular weight of approx. 40000. 4. The conversion of the purified apoenzyme into the holoenzyme required the presence of the synthetase, ATP (Km3.3×10−7m), (+)-biotin (Km7.5×10−8m) and Mg2+; it differed from the conversions effected by systems forming other carboxylases in mesophilic organisms in also requiring the presence of acetyl-CoA.  相似文献   

11.
The levels of cyclic 2,3-diphosphoglycerate (cDPG) in methanogenic bacteria are governed by the antagonistic activities of cDPG synthetase and cDPG hydrolase. In this paper we focus on the synthetase from Methanobacterium thermoautotrophicum. The cytoplasmic 150 kDa enzyme catalyzed cDPG synthesis from 2,3-diphosphoglycerate (apparent Km=21 mM), Mg2+ (Km=3.1 mM) and ATP (Km=1–2 mM). In batch-fed cultures, the enzyme was constitutively present (6–6.5 nmol per min per mg protein) during the different growth phases. In continuous cultures, activity decreased in response to phosphate limitation. The synthetase reaction proceeded with maximal rate at pH 6 and at 65° C and was specifically dependent on high (>0.3M) K+ concentrations. The reaction conditions remarkably contrasted to those of cDPG degradation catalyzed by the previously described membrane-bound cDPG hydrolase.Abbreviations cDPG Cyclic 2,3-diphosphoglycerate - 2,3-DPG 2,3-Diphosphoglycerate - 2-PG 2-Phosphoglycerate - 3-PG 3-Phosphoglycerate  相似文献   

12.
Vitamin K is involved in the γ-carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin.  相似文献   

13.
A mixture of two pantetheine-free mutant fatty acid synthetases was dissociated and recombined invitro to form a hybrid apoenzyme complex. Invivo the corresponding Saccharomycescerevisiaefas-mutants exhibit interallelic complementation when crossed with each other and the enzyme synthesized in the resulting diploid contains pantetheine and exhibits overall fatty acid synthetase activity. Accordingly, the hybrid apoenzyme formed invitro could be activated to holo-fatty acid synthetase when incubated with coenzyme A and a partially purified yeast cell extract. The enzyme coenzyme A: fatty acid synthetase apoenzyme 4′-phosphopantetheine transferase has thus been identified in yeast. Further studies on the mechanism of fatty acid synthetase holoenzyme formation will now be possible.  相似文献   

14.
Chagas’ disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas’ disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exerted better effects against various cancer cells than when used alone. These effects have been attributed to an increase in reactive oxygen species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultrastructural, and functional changes by producing reactive species, decreasing reduced thiol groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles. Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance in T. cruzi, probably started by a redox cycling process that leads to parasite cell death.  相似文献   

15.
Summary Cytoplasmic aspartate aminotransferase from beef kindney loses 25% of its activity on nitration with tetranitromethane while the apoenzyme about 95%. In the holoenzyme 0.5 tyrosine residue and 1.0 tyrosine residue in the apoenzyme are nitrated per enzyme protomer. In addition 1 cysteine residue per protomer is oxidized in both. The presence of substrates,-ketoglutarate and glutamate, both at ten times their Km values, does not change these results. Mercaptoethanol does not affect the residual activity of either the nitrated holo or apoenzyme. Dithionite abolishes the activity of the nitrated holoenzyme by reducing the coenzyme moiety. It has no effect on the native holoenzyme or on either the native or nitroapoenzyme.This work is part of a program supported by a grant from the Consiglio Nazionale delle Ricerche.  相似文献   

16.
C3larvin toxin was identified by a bioinformatic strategy as a putative mono-ADP-ribosyltransferase and a possible virulence factor from Paenibacillus larvae, which is the causative agent of American Foulbrood in honey bees. C3larvin targets RhoA as a substrate for its transferase reaction, and kinetics for both the NAD+ (Km = 34 ± 12 μm) and RhoA (Km = 17 ± 3 μm) substrates were characterized for this enzyme from the mono-ADP-ribosyltransferase C3 toxin subgroup. C3larvin is toxic to yeast when expressed in the cytoplasm, and catalytic variants of the enzyme lost the ability to kill the yeast host, indicating that the toxin exerts its lethality through its enzyme activity. A small molecule inhibitor of C3larvin enzymatic activity was discovered called M3 (Ki = 11 ± 2 μm), and to our knowledge, is the first inhibitor of transferase activity of the C3 toxin family. C3larvin was crystallized, and its crystal structure (apoenzyme) was solved to 2.3 Å resolution. C3larvin was also shown to have a different mechanism of cell entry from other C3 toxins.  相似文献   

17.
Cysteine synthetase from Salmonella typhimurium LT-2 displays a saturation curve for sulfide identical to that obtained with uncomplexed O-acetylserine sulfhydrylase, indicating substrate inhibition with a Km of 0.1 ± 0.017 mm and a K1 of 0.303 ± 0.194 mm. With both l-serine and acetyl CoA, however, cysteine synthetase exhibits two intermediary plateaus in the respective saturation curves. The time course of cysteine synthetase activity when the reaction is started by adding enzyme displays a pronounced lag phase. This lag is explained as being due to the buildup of a sufficient concentration of O-acetyl-l-serine to permit binding to O-acetylserine sulfhydrylase. This conclusion is substantiated by the fact that plots of 1τ against concentrations of both l-serine and acetyl CoA reflect the saturation curves for these substrates. In addition, the incubation of the complex with l-serine and acetyl CoA results in the accumulation of the intermediate products of the reaction sequence, CoA and O-acetyl-l-serine. Dissociation of the multienzyme complex under these conditions was ruled out by Sephadex G-200 chromatography of the complex after incubation with assay levels of the substrates of the reaction. Aggregation of cysteine synthetase was detected using disc gel electrophoresis and confirms earlier reports [Kredich, N. M., and Tomkins, G. M. (1966) J. Biol. Chem.241, 4955–4965]. Aggregation of O-acetylserine sulfhydrylase was also detected using the same technique.  相似文献   

18.
Glutamine synthetase (EC 6.3.1.2) was purified to homogeneity from a free-living nitrogen fixing bacteria, Bacillus polymyxa. The holoenzyme, relative molecular mass (Mr) of 600 000 is composed of monomeric sub-units of 60 000 (Mr). The isoelectric point of the sub-units was 5.2. The pH optimum for the biosynthetic and transferase enzyme activity was 8.2 and 7.8, respectively. The apparent K m values (K m app ) in the biosynthetic reaction for glutamate, NH4Cl and ATP were 3.2, 0.22 and 1 mM, respectively. In the transferase reaction the K m values for glutamine, hydroxylamine and ADP were 6.5, 3.5 and 8×10-4 mM respectively. L-Methionine-D-L-sulfoximine was a very potent inhibitor in both biosynthetic and transferase reactions. Similar to most Gram positive bacteria there was no evidence of in vivo adenylylation and the enzyme seemed to be mainly regulated by feed-back mechanism.Abbreviations PMSF phenylmethylsulfonylfluoride - TCA trichloroacetic acid - GS glutamine synthetase - MSO L-Methionine-D-L-sulfoximine - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis - SVPDE snake venum phosphodiesterase  相似文献   

19.
Fatty acyl-CoA oxidase, the rate limiting enzyme of the peroxisomal fatty acid oxidizing system, has been purified from rat liver to near homogeneity by a procedure involving affinity chromatography of its apoenzyme on flavin adenin dinucleotide-Sepharose. The oxidase presents an absolute requirement for the dinucleotide which is weakly bound to the apoenzyme (KD, 0.6 μM). The highest specific activity obtained was 27 units/mg protein. The purified enzyme has two major polypeptides with apparent molecular weights of 45,000 and 22,000. These results suggest that the enzyme is a flavoprotein with non covalently bound flavin adenin dinucleotide composed of four subunits, two of 45,000 m.w. and two of 22,000 m.w.  相似文献   

20.
Carnosine synthetase was purified about 500-fold from mouse olfactory bulb to a specific activity of approx 25 nmol/min/mg. This is an increase of 800-fold over that previously reported for this enzyme from rat brain and 11 times higher than the most highly purified enzyme from chicken pectoral muscle. ATP was essential for activity and could not be replaced by ADP. NAD had no effect on the synthesis of carnosine. Of the β-alanine analogues tested, the purified mouse enzyme incorporated only γ-aminobutyric acid and β-amino-n-butyric acid into peptide linkage with histidine. Synthesis of carnosine by the mouse olfactory bulb enzyme was competitively inhibited by the histidine analogues, 1-methyl histidine and 3-methyl histidine, with Ki values which were at least 40 times the Km value for histidine (16 μM). Ornithine and lysine were more efficient β-alanine acceptors than 1-methyl histidine for the mouse enzyme. Enzyme from olfactory epithelium and leg skeletal muscle of mice also showed higher Ki values for 1–methyl histidine than the Km value for histidine. In contrast, carnosine-anserine synthetase from chicken pectoral muscle gave Km values for histidine, 1-methyl histidine and 3-methyl histidine, which were all in the range of 4–12 μM. The differences in substrate specificity between the enzyme from mouse and chicken implies alternate routes of anserine synthesis in these species and predicts the occurrence of certain novel peptides in mouse brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号